浏览全部资源
扫码关注微信
上海中医药大学附属岳阳中西医结合医院肝病科(上海 200437)
王玉洁,女,硕士研究生,主要从事肝病中西医结合临床研究工作
王见义,主任医师,硕士研究生导师; E-mail:wjydyj@163.com
纸质出版日期:2024-07-10,
收稿日期:2024-03-30,
扫 描 看 全 文
王玉洁,林晨,王一凤,等.基于网络药理学与实验研究探讨黄芩苷对Hepa1‑6 肝癌细胞凋亡的影响[J].上海中医药杂志,2024,58(7):31-39.
WANG Yujie,LIN Chen,WANG Yifeng,et al.Network pharmacology and experimental study‑based research on effects of baicalin on apoptosis in Hepa1‑6 hepatocellular carcinoma cells[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(7):31-39.
王玉洁,林晨,王一凤,等.基于网络药理学与实验研究探讨黄芩苷对Hepa1‑6 肝癌细胞凋亡的影响[J].上海中医药杂志,2024,58(7):31-39. DOI: 10.16305/j.1007-1334.2024.2403141.
WANG Yujie,LIN Chen,WANG Yifeng,et al.Network pharmacology and experimental study‑based research on effects of baicalin on apoptosis in Hepa1‑6 hepatocellular carcinoma cells[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(7):31-39. DOI: 10.16305/j.1007-1334.2024.2403141.
目的
2
通过网络药理学方法并结合细胞实验,探讨黄芩提取物黄芩苷对肝癌细胞Hepa1-6恶性生物学行为的影响及其促进肝癌细胞凋亡的潜在作用机制。
方法
2
①通过中药系统药理学数据库与分析平台(TCMSP)等筛选黄芩苷的潜在化合物靶标;在人类基因综合数据库(Genecard)、人类孟德尔遗传数据库(OMIM)和药物治疗靶标数据库(TTD)中检索与肝癌的疾病靶点,将肝癌疾病靶点与黄芩苷化合物靶点整合,构建韦恩图及其蛋白质互作网络(PPI),以揭示黄芩苷治疗肝癌相关的关键靶点;利用Cytoscape软件选择交互基因,并利用David数据库、Metascape数据库分别进行基因本体(GO)功能富集和京都基因和基因组百科全书(KEGG)通路富集分析,阐明黄芩苷治疗肝癌的作用机制及相关通路。②通过细胞计数试剂盒(CCK-8)实验检测不同浓度的黄芩苷对Hepa1-6细胞活力的影响;Transwell细胞侵袭实验观察黄芩苷对Hepa1-6细胞侵袭能力的影响;流式细胞术检测不同浓度的黄芩苷对肝癌细胞Hepa1-6凋亡的影响;Western blot法检测白介素-6(IL-6)/信号转导与转录激活因子3(STAT3)信号通路相关蛋白及B淋巴细胞瘤-2蛋白(Bcl-2)、Bcl-2关联X蛋白(Bax)的表达情况。
结果
2
基于网络药理学共鉴定出黄芩苷作用靶点527个,肝癌疾病靶点1 550个,双方交集靶点139个;综合网络药理学筛选结果选定Janus激酶(JAK)/STAT3信号通路作为研究通路。细胞实验表明,黄芩苷能够抑制肝癌细胞的增殖、侵袭和迁移等一系列恶性生物学行为,流式细胞术及Western blot结果表明黄芩苷可抑制肝癌细胞内IL-6/STAT3信号通路的激活,调控Bcl-2、Bax的表达而促进肝癌细胞的凋亡。
结论
2
网络药理学结合细胞实验研究发现黄芩苷是治疗肝癌的潜在有效药物,可以抑制肝癌细胞的增殖、侵袭、迁移活动,显著促进肝癌细胞凋亡,其作用机制与其下调IL-6/STAT3信号通路密切相关。
Objective
2
To investigate the effects of baicalin, an extract from Huangqin (Scutellariae Radix), on the malignant biological behaviors of Hepa1-6 hepatocellular carcinoma (HCC) cells and its potential mechanism in promoting apoptosis in HCC cells by combining network pharmacology and cellular experiments.
Methods
2
①The potential targets of baicalin were determined using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP). Subsequently, HCC related disease targets were retrieved from the Human Gene Database (GeneCards), the Online Mendelian Inheritance in Man (OMIM), and the Therapeutic Target Database (TTD). These targets were integrated with the baicalin compound targets to construct Venn diagrams and a protein-protein interaction (PPI) network to reveal key targets in baicalin treatment of HCC. Interaction genes were selected using Cytoscape software, and gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and Metascape database to elucidate the mechanism of action and related pathways in baicalin treatment of HCC. ②The effects of different concentrations of baicalin on Hepa1-6 cell viability were assessed using Cell Counting Kit-8 (CCK-8) assays. The impact on cell invasion capabilities was observed through Transwell cell invasion assays, and the effects of different concentrations of baicalin on the apoptosis of Hepa1-6 HCC cells were analyzed by flow cytometry. Western blot analysis was conducted to detect the expression of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway-related proteins, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax) proteins.
Results
2
Network pharmacology identified 527 baicalin targets and 1,550 HCC related disease targets, with 139 overlapping targets. The Janus kinase (JAK)/STAT3 signaling pathway was selected as the research pathway based on network pharmacology screening results. Cellular experiments showed that baicalin could inhibit a range of malignant biological behaviors such as proliferation, invasion, and migration of HCC cells. Flow cytometry and Western blot results showed that baicalin could inhibit the activation of the IL-6/STAT3 signaling pathway within the HCC cells, regulate the expression of Bcl-2 and Bax, and promote apoptosis of HCC cells.
Conclusions
2
Research combining network pharmacology with cellular experiments has found that baicalin is a potentially effective treatment for HCC. It can inhibit the proliferation, invasion, and migration of HCC cells and significantly promote apoptosis. The mechanism of action is closely related to the downregulation of the IL-6/STAT3 signaling pathway.
肝癌黄芩苷细胞凋亡细胞迁移网络药理学中药研究作用机制
hepatocellular carcinomabaicalincell apoptosiscell migrationnetwork pharmacologytraditional Chinese herbal medicine researchmechanism of action
LI X, RAMADORI P, PFISTER D, et al. The immunological and metabolic landscape in primary and metastatic liver cancer[J]. Nat Rev Cancer, 2021, 21(9): 541-557.
WEN Y, WANG Y, ZHAO C, et al. The pharmacological efficacy of baicalin in inflammatory diseases[J]. Int J Mol Sci, 2023, 24(11):9317.
KONG N, CHEN X, FENG J, et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1[J]. Acta pharmaceutica Sinica B, 2021, 11(12): 4045-4054.
ZHAO F, ZHAO Z, HAN Y, et al. Baicalin suppresses lung cancer growth phenotypes via miR-340-5p/NET1 axis[J]. Bioengineered, 2021, 12(1): 1699-1707.
WANG L, FENG T, SU Z, et al. Latest research progress on anticancer effect of baicalin and its aglycone baicalein[J]. Arch Pharm Res, 2022, 45(8): 535-557.
JIANG H, YAO Q, AN Y, et al. Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m6 A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway[J]. Phytomedicine, 2022, 94: 153823.
QI J, LI J, BIE B, et al. miR-3,178 contributes to the therapeutic action of baicalein against hepatocellular carcinoma cells via modulating HDAC10[J]. Phytother Res, 2023, 37(1): 295-309.
YUAN J, KHAN S U, YAN J, et al. Baicalin enhances the efficacy of 5-Fluorouracil in gastric cancer by promoting ROS-mediated ferroptosis[J]. Biomed Pharmacother, 2023, 164: 114986.
WANG Y, YIN S, ZHOU Y, et al. Dual-function of baicalin in nsPEFs-treated hepatocytes and hepatocellular carcinoma cells for different death pathway and mitochondrial response[J]. Int J Med Sci, 2019, 16(9): 1271-1282.
GRAVITZ L. Liver cancer[J]. Nature, 2014, 516(7529): S1.
QIU Z, LI H, ZHANG Z, et al. A pharmacogenomic landscape in human liver cancers[J]. Cancer Cell, 2019, 36(2): 179-193.
蒋式骊,范海纳,刘平,等.肝硬化并发肝癌的中西医结合诊治现状与评述[J].上海中医药杂志,2023, 57(8): 21-26.
LI Y, LI Y, ZHANG J, et al. Current perspective of traditional Chinese medicines and active ingredients in the therapy of hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2022, 9: 41-56.
YANG J Y, LI M, ZHANG C L, et al. Pharmacological properties of baicalin on liver diseases: a narrative review[J]. Pharmacol Rep, 2021, 73(5): 1230-1239.
DINDA B, DINDA S, DASSHARMA S, et al. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders [J]. Eur J Med Chem, 2017, 131: 68-80.
HU Q, ZHANG W, WU Z, et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects[J]. Pharmacol Res, 2021, 165: 105444.
ZHANG J, ZHANG H, DENG X, et al. Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice[J]. Life Sci, 2018, 192: 46-54.
ZHANG S, ZHONG R, TANG S, et al. Baicalin alleviates short-term lincomycin-induced intestinal and liver injury and inflammation in infant mice[J]. Int J Mol Sci, 2022, 23(11):6072.
SHI L, ZHANG S, HUANG Z, et al. Baicalin promotes liver regeneration after acetaminophen-induced liver injury by inducing NLRP3 inflammasome activation[J]. Free Radic Biol Med, 2020, 160: 163-177.
LIU W J, CHEN W W, CHEN J Y, et al. Baicalin attenuated metabolic dysfunction-associated fatty liver disease by suppressing oxidative stress and inflammation via the p62-Keap1-Nrf2 signalling pathway in db/db mice [J/OL]. Phytother Res, 2023[2023-12-08].https://pubmed.ncbi.nlm.nih.gov/37697721/https://pubmed.ncbi.nlm.nih.gov/37697721/.
FANG L, WANG H F, CHEN Y M, et al. Baicalin confers hepatoprotective effect against alcohol-associated liver disease by upregulating microRNA-205[J]. Int Immunopharmacol, 2022, 107: 108553.
SUN J, YANG X, SUN H, et al. Baicalin inhibits hepatocellular carcinoma cell growth and metastasis by suppressing ROCK1 signaling [J]. Phytother Res, 2023, 37(9): 4117-4132.
ERDOGAN F, RADU T B, ORLOVA A, et al. JAK-STAT core cancer pathway: An integrative cancer interactome analysis[J]. J Cell Mol Med, 2022, 26(7): 2049-2062.
HEICHLER C, SCHEIBE K, SCHMIED A, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis[J]. Gut, 2020, 69(7): 1269-1282.
MA Z, SUN Q, ZHANG C, et al. RHOJ induces epithelial-to-mesenchymal transition by IL-6/STAT3 to promote invasion and metastasis in gastric cancer[J]. Int J Biol Sci, 2023, 19(14): 4411-4426.
MA Y, ZHU Y, SHANG L, et al. LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling [J]. Oncogene, 2023, 42(18): 1419-1437.
HE G, KARIN M. NF‑κB and STAT3‑key players in liver inflammation and cancer[J]. Cell Res, 2011, 21(1): 159-168.
XIN P, XU X, DENG C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases[J]. Int Immunopharmacol, 2020, 80: 106210.
ROSE-JOHN S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6[J]. Int J Biol Sci, 2012, 8(9): 1237-1247.
SCHMIDT-ARRAS D, ROSE-JOHN S. IL-6 pathway in the liver: From physiopathology to therapy[J]. J Hepatol, 2016, 64(6): 1403-1415.
JOHNSON D E, O'KEEFE R A, GRANDIS J R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018, 15(4): 234-248.
CAO Q, MAK K M, LIEBER C S. Leptin represses matrix metalloproteinase-1 gene expression in LX2 human hepatic stellate cells[J]. J Hepatol, 2007, 46(1): 124-133.
ZHAO J, QI Y F, YU Y R. STAT3: A key regulator in liver fibrosis [J]. Ann Hepatol, 2021, 21: 100224.
PARK J, ZHAO Y, ZHANG F, et al. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease [J]. J Hepatol, 2023, 78(1): 45-56.
LEPILLER Q, ABBAS W, KUMAR A, et al. HCMV activates the IL-6-JAK-STAT3 axis in HepG2 cells and primary human hepatocytes [J]. PLoS One, 2013, 8(3): e59591.
SEHGAL P B. Interleukin-6 at the host-tumor interface: STAT3 in biomolecular condensates in cancer cells[J]. Cells, 2022, 11(7):1164.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构