1.上海中医药大学中药研究所,中药标准化教育部重点实验室(上海 201203)
2.广西梧州中恒集团股份有限公司(广西 梧州 543000)
3.广西中恒创新医药研究有限公司(广西 南宁 530000)
王筱懿,女,本科生,主要从事中药制剂分析与新剂型研究工作
尉小慧,研究员,硕士研究生导师;E-mail: xhweixh@163.com
扫 描 看 全 文
王筱懿,仇坤,陈明,等.三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1的HPLC定量分析及其肠黏膜渗透性研究[J].上海中医药杂志,2023,57(9):78-84.
WANG Xiaoyi,QIU Kun,CHEN Ming,et al.Quantitative analysis of notoginsenoside R1, ginsenoside Rg1 and ginsenoside Rb1 by HPLC and their intestinal mucosal permeability[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(9):78-84.
王筱懿,仇坤,陈明,等.三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1的HPLC定量分析及其肠黏膜渗透性研究[J].上海中医药杂志,2023,57(9):78-84. DOI: 10.16305/j.1007-1334.2023.2306001.
WANG Xiaoyi,QIU Kun,CHEN Ming,et al.Quantitative analysis of notoginsenoside R1, ginsenoside Rg1 and ginsenoside Rb1 by HPLC and their intestinal mucosal permeability[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(9):78-84. DOI: 10.16305/j.1007-1334.2023.2306001.
目的,2,通过前期建立的3种体外肠黏液渗透模型[纯化黏蛋白渗透模型(PIM)、人工肠黏液渗透模型(AIM)及大鼠肠黏液渗透模型(RIM)],研究三七中主要单体成分三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1在肠黏液层的渗透作用,以期为三七皂苷类成分的口服吸收及应用提供实验依据。,方法,2,采用高效液相色谱(HPLC)法建立三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1的定量分析方法,并对其线性范围、精密度、稳定性、重复性、加样回收率进行考察;分别测定不同浓度三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1溶液在3种肠黏液渗透模型上的表观渗透系数(Papp),分析比较其肠黏液渗透作用。,结果,2,建立了三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1的HPLC定量分析方法,精密度、稳定性、重复性、加样回收率均符合要求。3种皂苷成分在PIM、AIM、RIM模型的渗透性结果显示:三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1在3种模型上的渗透作用随着药物浓度的升高均有不同程度的增加;在PIM中,与人参皂苷Rb1和人参皂苷Rg1相比,三七皂苷R1在不同浓度下的Papp均显著增加(,P,<,0.05);在AIM中,20 g,·,L,-1,浓度下的Papp为三七皂苷R1,>,人参皂苷Rb1,>,人参皂苷Rg1(,P,<,0.05);在RIM中,20 g,·,L,-1,浓度下的Papp为人参皂苷Rg1,>,三七皂苷R1,>,人参皂苷Rb1(,P,<,0.05)。,结论,2,不同浓度的三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1在3种肠黏液渗透模型中的稳定性、重现性较好,且随着药物浓度的上升渗透性也随之增加;水溶性较强且分子量相对较小的三七皂苷R1在脂类成分较少的PIM和AIM中渗透作用较强,而脂溶性较强的人参皂苷Rg1在RIM中渗透作用较强。
Objective,2,To investigate the effects of notoginsenoside R1, ginsenoside Rg1 and Rb1 on intestinal mucus permeation by using three ,in vitro, intestinal mucus permeation models[purified mucin infiltration model (PIM), artificial intestinal mucus infiltration model (AIM) and rat intestinal mucus infiltration model (RIM)] in order to provide experimental basis for the oral absorption and application of notoginseng Radix Et Rhizoma.,Methods,2,Quantitative analysis methods of notoginsenoside R1, ginsenoside Rg1 and Rb1 were established by high performance liquid chromatography (HPLC), and their linear range, precision, stability, reproducibility and sample recovery rate were investigated. The apparent permeability coefficients (Papp) of different concentrations of notoginsenoside R1, ginsenoside Rg1 and ginsenoside Rb1 solutions on three intestinal mucus permeation models were determined and analyzed to compare their intestinal mucus permeation effects.,Results,2,The HPLC methods for the quantitative analysis of notoginsenoside R1, ginsenoside Rg1 and ginsenoside Rb1 were successfully established. The precision, stability, reproducibility and recovery all met the requirements. The permeability results of three kinds of saponins in PIM, AIM and RIM models showed that the permeability of notoginsenoside R1 and ginsenoside Rg1 and ginsenoside Rb1 in the three models increased in different degrees with the increase of drug concentration. In PIM, notoginsenoside R1 showed a significant increase in the permeation rate compared with ginsenoside Rb1 and ginsenoside Rg1 at different concentrations (,P,<,0.05). In AIM, the permeation rate at a concentration of 20 g,·,L,-1, was Papp,R1,>, Papp,Rb1,>, Papp,Rg1, (,P,<,0.05). In RIM, the permeation rate at a concentration of 20 g,·,L,-1 ,was Papp,Rg1,>, Papp,R1,>, Papp,Rb1, (,P,<,0.05).,Conclusions,2,Notoginsenoside R1, ginsenoside Rg1 and ginsenoside Rb1 with different concentrations have good stability and reproducibility in three intestinal mucus permeation models, and the permeability increases with the increase of drug concentration. Notoginsenoside R1 with strong water solubility and relatively low molecular weight is more permeable in PIM and AIM with less lipids, while ginsenoside Rg1 with strong fat solubility is stronger in RIM.
三七三七皂苷R1人参皂苷Rg1人参皂苷Rb1肠吸收生物利用度中药研究
notoginseng Radix Et Rhizomnotoginsenoside R1ginsenoside Rg1ginsenoside Rb1intestinal absorptionbioavailabilitytraditional Chinese herbal medicine research
郭世奇. 基于口服药物递送聚合物纳米粒的基础性质与肠道吸收相关性的研究[D]. 烟台:烟台大学,2021.
PELASEYED T, BERGSTRÖM J H, GUSTAFSSON J K, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system[J]. Immunol Rev, 2014, 260(1): 8-20.
MCSHANE A, BATH J, JARAMILLO A M, et al. Mucus[J]. Curr Biol, 2021, 31(15): R938-R945.
ENSIGN L M, SCHNEIDER C, SUK J S, et al. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery[J]. Adv Mater, 2012, 24(28): 3887-3894.
FEKETE E, BURET A G. The role of mucin O-glycans in microbiota dysbiosis, intestinal homeostasis, and host-pathogen interactions[J]. Am J Physiol Gastrointest Liver Physiol, 2023, 324(6): G452-G465.
NYSTRÖM E E L, BIRCHENOUGH G M H, VAN DER POST S, et al. Calcium-activated chloride channel regulator 1(CLCA1) controls mucus expansion in colon by proteolytic activity[J]. EBioMedicine, 2018, 33: 134-143.
JOHANSSON M E, SJÖVALL H, HANSSON G C. The gastrointestinal mucus system in health and disease[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(6): 352-361.
刘欢,梁新丽,蒋且英,等. 胃肠道黏液对跨膜转运药物的影响及口服药物传递策略研究进展[J]. 中国药学杂志,2022, 57(3): 176-180.
程元元,崔佳旗,迪丽努尔·多来提,等. 中药三七在胃肠疾病护膜法治疗中的运用探析[J]. 上海中医药杂志,2023, 57(1): 54-57.
国家药典委员会. 中华人民共和国药典(2020年版):一部[M]. 北京:中国医药科技出版社,2020: 411.
国家中医心血管病临床医学研究中心,中国医师协会中西医结合医师分会,中国中西医结合学会活血化瘀专业委员会,等. 三七总皂苷制剂临床应用中国专家共识[J].中国中西医结合杂志,2021, 41(10): 1157-1167.
WINN L M. In vitro models in developmental toxicology[J]. Methods Mol Biol, 2019, 1965: 1-6.
WRIGHT L, WIGNALL A, JÕEMETSA S, et al. A membrane-free microfluidic approach to mucus permeation for efficient differentiation of mucoadhesive and mucopermeating nanoparticulate systems[J]. Drug Deliv Transl Res, 2023, 13(4): 1088-1101.
张丹丹,王松,李玉杰,等. 基于平行人工膜渗透性分析法初步预测盐酸吡格列酮制剂生物等效性[J]. 食品与药品,2022, 24(3): 227-233.
WANG C M, FERNEZ M T, WOOLSTON B M, et al. Native gastrointestinal mucus: models and techniques for studying interactions with drugs, drug carriers, and bacteria[J]. Adv Drug Deliv Rev, 2023: 114966.
苏元元,付宇,李楠楠,等. 三种达玛烷型皂苷的生物药剂学分类及吸收机制研究[J]. 中国现代中药,2018, 20(9): 1150-1156.
方文悠. 三七总皂苷脂质体口服结肠定位胶囊的研究[D]. 合肥:安徽中医药大学,2015.
GEORGIADES P, DI COLA E, HEENAN R K, et al. A combined small-angle X-ray and neutron scattering study of the structure of purified soluble gastrointestinal mucins[J]. Biopolymers, 2014, 101(12): 1154-1164.
黄啸,郑曦,徐娅娟,等. 生物材料表面仿生磷脂化改性的研究概况[J]. 生物医学工程研究,2017, 36(4): 392-396.
GAO S, BASU S, YANG Z, et al. Bioavailability challenges associated with development of saponins as therapeutic and chemopreventive agents[J]. Current drug targets, 2012, 13(14): 1885-1899.
PAN W, XUE B, YANG C, et al. Biopharmaceutical characters and bioavailability improving strategies of ginsenosides[J]. Fitoterapia, 2018, 129: 272-282.
CHEN X N, LI D Q, ZHAO M D, et al. Pharmacokinetics of Panax notoginseng saponins in adhesive and normal preparation of Fufang Danshen[J]. Eur J Drug Metab Pharmacokinet, 2018, 43(2): 215-225.
ZHENG Y, BAI J, LI X, et al. Biosynthesis and pharmacokinetics of Panax notoginseng enteric-coated soft capsules[J]. Ann Transl Med, 2023, 11(2): 1-18.
WU H, LIU H, DU S, et al. Comparison of pharmacokinetics of different oral Panax notoginseng saponins using ultra-high performance liquid mass spectrometry[J]. JTCM, 2021, 8(1): 90-98.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构