1.上海中医药大学附属曙光医院肿瘤科/肿瘤研究所(上海 201203)
于浩,男,硕士研究生,主要从事中医药防治恶性肿瘤研究工作
王炎,研究员,博士研究生导师;E-mail:wangyan_sg @126.com
朱惠蓉,研究员,主任医师,博士研究生导师; E-mail:zhu_huirong@126.com
扫 描 看 全 文
于浩,呼雪庆,张影茹,等.健脾解毒方通过Hippo信号通路抑制大肠癌上皮间质转化的机制研究[J].上海中医药杂志,2023,57(7):42-50.
YU Hao,HU Xueqing,ZHANG Yingru,et al.Mechanism of Jianpi Jiedu Formula to inhibit epithelial mesenchymal transition of colorectal cancer through Hippo signaling pathway[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(7):42-50.
于浩,呼雪庆,张影茹,等.健脾解毒方通过Hippo信号通路抑制大肠癌上皮间质转化的机制研究[J].上海中医药杂志,2023,57(7):42-50. DOI: 10.16305/j.1007-1334.2023.2304045.
YU Hao,HU Xueqing,ZHANG Yingru,et al.Mechanism of Jianpi Jiedu Formula to inhibit epithelial mesenchymal transition of colorectal cancer through Hippo signaling pathway[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(7):42-50. DOI: 10.16305/j.1007-1334.2023.2304045.
目的,2,探讨健脾解毒方对大肠癌转移能力和上皮间质转化(EMT)的影响及可能的作用机制。,方法,2,①采用细胞活力检测(CCK-8)法观察不同浓度健脾解毒方对人肠癌细胞生长的抑制作用;分别采用Transwell实验和划痕愈合实验检测健脾解毒方对肠癌细胞侵袭和迁移能力的影响;Western blot法检测健脾解毒方对细胞中EMT和Hippo信号通路相关蛋白表达的影响。②采用肠癌肺转移模型体内验证健脾解毒方对肠癌肺转移的影响及对Hippo信号通路的影响,使用苏木精-伊红(HE)染色检测肺转移灶转移情况,采用免疫组织化学法检测肺转移灶中Yes相关蛋白(YAP)的表达。③使用小分子抑制剂(XMU-MP-1)干预Hippo信号通路后,Transwell实验、划痕实验和Western blot法检测健脾解毒方对肠癌细胞侵袭转移和EMT的影响。,结果,2,①健脾解毒方以剂量和时间依赖性方式抑制人肠癌细胞的生长。与对照组比较,健脾解毒方能够明显抑制人肠癌细胞的侵袭和迁移能力(,P,<,0.05),同时健脾解毒方能够抑制肠癌细胞EMT进程;进一步研究显示健脾解毒方可以促进Hippo信号通路的激活,减少YAP入核。②体内实验的肺转移灶HE染色结果显示,健脾解毒方可以抑制肠癌肺转移灶的体积,免疫组织化学检测提示健脾解毒方可以减少转移灶中YAP的表达。③使用XMU-MP-1抑制Hippo信号通路能够增加YAP在细胞核内的积累,促进肠癌细胞的侵袭迁移能力及EMT相关蛋白的表达,促进肠癌转移;健脾解毒方可以显著减少小分子抑制剂组肠癌细胞侵袭迁移能力以及EMT的进程。,结论,2,健脾解毒方能够抑制人肠癌细胞的转移能力,其作用机制与激活Hippo信号通路有关。
Objective,2,To investigate the effect and possible mechanism of action of Jianpi Jiedu Formula (JPJDF) on metastatic ability and epithelial mesenchymal transition (EMT) of colorectal cancer.,Methods,2,①CCK-8 cell viability assay was used to observe the inhibitory effect of JPJDF at different concentrations on the growth of human colorectal cancer cells. Transwell and scratch healing assay were used to detect the effect of JPJDF on the invasion and migration ability of colorectal cancer cells, respectively. Western blot was used to detect the effect of JPJDF on EMT and the expression of the Hippo signaling pathway-related proteins in cells. ②The effect of JPJDF on lung metastases from colorectal cancer and the Hippo signaling pathway was verified via an in-vivo study with the lung metastases model of colorectal cancer. Hematoxylin-eosin (HE) staining was used to detect lung metastases, and immunohistochemistry was used to detect the expression of YAP protein in lung metastases. ③Transwell, scratch healing assay and Western blot were used to detect the effect of JPJDF on the colorectal cancer cell invasion and metastasis and EMT after the Hippo signaling pathway was intervened with XMU-MP-1.,Results,2,①JPJDF inhibited the growth of colorectal cancer cells in a dose- and time-dependent manner. The inhibitory effect on the invasion and migration ability of colorectal cancer cells in JPJDF groups was more significant than that in control group (,P,<,0.05), and JPJDF could inhibit the EMT process of colorectal cancer cells. Further studies showed that JPJDF could promote the activation of the Hippo signaling pathway and reduce YAP protein entry into the nucleus. ②HE staining results of lung metastases in vivo showed that JPJDF could inhibit the volume of lung metastases from colorectal cancer, and immunohistochemistry suggested that JPJDF could reduce the expression of YAP protein in metastases. ③Inhibition of the Hippo signaling pathway with XMU-MP-1 could increase the pools of YAP in the nucleus, promote the invasion and migration ability of colorectal cancer cells and the expression of EMT-related proteins, and boost metastases of colorectal cancer. JPJDF could significantly reduce the invasion and migration ability of colorectal cancer cells and slow down the progression of EMT in the group intervened with XMU-MP-1.,Conclusion,2,JPJDF can inhibit the metastatic ability of human colorectal cancer cells, and the mechanism of action is related to the activation of the Hippo signaling pathway.
大肠癌健脾解毒方作用机制上皮间质转化小鼠模型中药研究
colorectal cancerJianpi Jiedu Formulamechanism of actionepithelial mesenchymal transitionmouse modeltraditional Chinese herbal medicine research
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
SIEGEL R L, WAGLE N S, CERCEK A, et al. Colorectal cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(3): 233-254.
YU H, HEMMINKI K. Genetic epidemiology of colorectal cancer and associated cancers[J]. Mutagenesis, 2020, 35(3): 207-219.
杨燕青,刘宁宁,刘煊,等. 健脾解毒方治疗脾虚湿热型晚期大肠癌的临床疗效评价[J].上海中医药大学学报,2017, 31(6): 19-23.
张彦博,刘宣,季青,等. 健脾解毒方联合化疗治疗转移性结直肠癌临床研究[J]. 中华中医药杂志,2015, 30(6): 2090-2093.
刘宣,柴妮,韩植芬,等. 健脾解毒方对湿热证结肠癌小鼠肿瘤血管新生的抑制作用[J]. 上海中医药大学学报,2015, 29(6): 50-54.
成丹. YAP促进结肠癌上皮间质转化的分子机制研究[D]. 十堰:湖北医药学院,2020.
FAN F, HE Z, KONG L L, et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration[J]. Sci Transl Med, 2016, 8(352): 352ra108.
吴新楠. 健脾解毒方通过JMJD2C/MALAT1/β-catenin信号通路抑制大肠癌转移的机制研究[D]. 上海:上海中医药大学,2020.
SCHREUDERS E H, RUCO A, RABENECK L, et al. Colorectal cancer screening: a global overview of existing programmes[J]. Gut, 2015, 64(10): 1637-1649.
张勇,许建华,孙珏,等. 健脾解毒方联合FOLFOX4方案治疗晚期结直肠癌临床研究[J]. 环球中医药,2010, 3(2): 117-120.
许建华,范忠泽,孙珏,等. 肠胃清治疗晚期胃肠癌及对外周血MDR1 mRNA的影响[J].上海中医药杂志,2007, 41(5):40-42.
甄慧燕. 基于JAK/STAT3信号通路研究SP2509对本虚标实前列腺癌的治疗作用[D]. 长春:长春中医药大学,2021.
WANG L, SHI S, GUO Z, et al. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells[J]. PLoS One, 2013, 8(6): e65539.
MURAMATSU T, IMOTO I, MATSUI T, et al. YAP is a candidate oncogene for esophageal squamous cell carcinoma[J]. Carcinogenesis, 2011, 32(3): 389-398.
NOGUCHI S, SAITO A, HORIE M, et al. An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer[J]. Clin Cancer Res, 2014, 20(17): 4660-4672.
ZHAO B, TUMANENG K, GUAN K L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal[J]. Nat Cell Biol, 2011, 13(8): 877-883.
CORDENONSI M, ZANCONATO F, AZZOLIN L, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells[J]. Cell, 2011, 147(4): 759-772.
LEI Q Y, ZHANG H, ZHAO B, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway[J]. Mol Cell Biol, 2008, 28(7): 2426-2436.
YU B, SU J, SHI Q, et al. KMT5A-methylated SNIP1 promotes triple-negative breast cancer metastasis by activating YAP signaling[J]. Nat Commun, 2022,13(1): 2192.
HERZIG M, SAVARESE F, NOVATCHKOVA M, et al. Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling[J]. Oncogene, 2007, 26(16): 2290-2298.
YANG J, MANI S A, DONAHER J L, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell, 2004,117(7): 927-939.
LIU Y, SONG Y, CAO M, et al. A novel EHD1/CD44/Hippo/SP1 positive feedback loop potentiates stemness and metastasis in lung adenocarcinoma[J]. Clin Transl Med, 2022, 12(4): e836.
YAO Y, LIU Z, HUANG S, et al. The E3 ubiquitin ligase, FBXW5, promotes the migration and invasion of gastric cancer through the dysregulation of the Hippo pathway[J]. Cell Death Discov, 2022, 8(1): 79.
CHEN X, ZHANG X, JIANG Y, et al. YAP1 activation promotes epithelial-mesenchymal transition and cell survival of renal cell carcinoma cells under shear stress[J]. Carcinogenesis, 2022, 43(4): 301-310.
LIU X, JI Q, DENG W, et al. JianPi JieDu Recipe inhibits epithelial-to-mesenchymal transition in colorectal cancer through TGF-β/Smad mediated Snail/E-Cadherin expression[J]. Biomed Res Int, 2017, 2017: 2613198.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构