1.上海中医药大学康复医学院(上海 201203)
2.上海中医药大学中西医结合学院(上海 201203)
巴宗韬,男,硕士研究生,主要从事中医药防治老年病的机制研究工作
徐颖,教授,博士研究生导师;E-mail:ying6122003@aliyun.com
王健,副研究员,硕士研究生导师;E-mail:wangjiant cm@126.com
扫 描 看 全 文
巴宗韬,高外毛,热爱拉·阿合力江 ,等.葛根素治疗阿尔茨海默病作用机制的网络药理学及分子对接研究[J].上海中医药杂志,2023,57(9):33-41.
BA Zongtao,GAO Waimao,AHELIJIANG Reaila,et al.Network pharmacology and molecular docking study on the mechanism of action of puerarin for Alzheimer's disease[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(9):33-41.
巴宗韬,高外毛,热爱拉·阿合力江 ,等.葛根素治疗阿尔茨海默病作用机制的网络药理学及分子对接研究[J].上海中医药杂志,2023,57(9):33-41. DOI: 10.16305/j.1007-1334.2023.2302040.
BA Zongtao,GAO Waimao,AHELIJIANG Reaila,et al.Network pharmacology and molecular docking study on the mechanism of action of puerarin for Alzheimer's disease[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(9):33-41. DOI: 10.16305/j.1007-1334.2023.2302040.
目的,2,运用网络药理学及分子对接的方法探究葛根素(Pue)干预阿尔茨海默病(AD)的分子作用机制,并进行动物实验验证。,方法,2,通过中药系统药理学数据库与分析平台(TCMSP)、集成药效团匹配平台(PharmMapper)等获取Pue的作用靶点,利用人类基因综合数据库(GeneCards)获取AD相关靶点,映射后获取交集靶点,应用Cytoscape v3.9.1 软件构建蛋白质相互作用网络图,并筛选出核心靶点进行基因功能富集分析、信号通路分析和分子对接;通过基因鉴定将5月龄的早老素1/2条件性双基因敲除(PS cDKO)小鼠给予Pue(100 mg/kg)的腹腔注射治疗,然后进行行为学测试,测试结束后取材进行分子生物学检测。,结果,2,通过筛选获得Pue干预AD的核心靶点共118个。基因本体论(GO)功能富集分析得到148个条目(,P,<,0.05),其中生物过程条目100个,细胞组成条目23个,分子功能条目25个;京都基因和基因组百科全书数据库(KEGG)通路分析富集得到11条信号通路(,P,<,0.05),主要包括AD信号通路、磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/AKT)信号通路和丝裂原活化蛋白激酶(MAPK)信号通路等。分子对接结果显示,Pue与丝氨酸/苏氨酸蛋白激酶1(AKT1)、半胱氨酸蛋白酶3(CASP3)、白蛋白(ALB)、表皮生长因子受体(EGFR)、肿瘤坏死因子(TNF)、血管内皮生长因子A(VEGFA)可以对接。行为学结果显示,Pue可以改善PS cDKO小鼠受损的空间记忆(,P,<,0.05)。免疫印迹(Western blot)结果显示,Pue下调了PS cDKO小鼠前额皮质中细胞外调节蛋白激酶(Erk1/2)的磷酸化水平的表达,并抑制了裂解的半胱氨酸蛋白酶-3(Cleaved Caspase-3)的表达水平。,结论,2,基于网络药理学和实验研究表明,Pue可以通过多靶点、多通路发挥对AD的干预作用,在临床和新药研发中具有参考价值。
Objective,2,To investigate the molecular mechanism of action of Puerarin (Pue) in intervening Alzheimer's disease (AD) based on network pharmacology and molecular docking methods, and conduct animal experimental verification.,Methods,2,Use Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Integrated Pharmacophore Matching Platform (PharmaMapper), etc, to obtain the target of Pue. Use The Human Gene Database(GeneCards) to obtain AD related targets and intersection targets after mapping. Apply Cytoscape v3.9.1 to construct protein interaction network diagrams, and screen out core targets for GO enrichment analysis, KEGG signaling pathway analysis and molecular docking. The 5-month-old progerin-1/2 conditional double knockout (PS cDKO) mice were treated with intraperitoneal injection of Pue (100 mg/kg) based on gene identification, followed by behavioral testing, and after that the sample material was taken for molecular biological testing.,Results,2,A total of 118 core targets for Pue intervention in AD were obtained through screening. GO functional enrichment analysis revealed 148 items (,P,<,0.05), including 100 items for biological process, 23 items for cell composition, and 25 items for molecular function. KEGG pathway analysis enriched 11 signaling pathways (,P,<,0.05), mainly including Alzheimer's disease signaling pathway, phosphatidylino-sitol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway, etc. Molecular docking results showed that Pue had better docking activity with AKT Serine/Threonine Kinase 1 (AKT1), cysteine proteinase 3 (CASP3), albumin (ALB), epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF), and vascular endothelial growth factor A (VEGFA). Behavioral results showed that Pue could improve the impaired spatial memory in PS cDKO mice (,P,<,0.05). Western blot results showed that Pue down-regulated the expression of Erk1/2 phosphorylation in the prefrontal cortex of PS cDKO mice, and inhibited the expression of Cleaved Caspase-3.,Conclusion,2,Based on network pharmacology and experimental studies, it has been shown that Pue can intervene in the course of AD through multiple targets and pathways, which can provide a reference for clinical practice and new drug development.
阿尔茨海默病葛根素网络药理学分子对接作用机制中药研究
Alzheimer's diseasepuerarinnetwork pharmacologymolecular dockingmechanism of actiontraditional Chinese herbal medicine research
KNOPMAN D S, AMIEVA H, PETERSEN R C, et al. Alzheimer disease[J]. Nat Rev Dis Primers, 2021, 7(1): 33.
ELDER G A, GAMA SOSA M A, DE GASPERI R, et al. Presenilin transgenic mice as models of Alzheimer's disease[J]. Brain Struct Funct, 2010, 214(2-3): 127-143.
ZHANG L, ZHANG Z, FU Y, et al. Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide[J]. Neuropharmacology, 2016, 110(Pt A): 503-518.
顾祎宁,卢志园,巴宗韬,等. 调心补肾方对阿尔茨海默病小鼠前额皮质中小胶质细胞激活和神经炎症反应的影响[J]. 上海中医药杂志,2022, 56(8): 84-89.
陈胜玮,许峥,王天麟,等. 基于β淀粉样蛋白探讨苯乙醇苷类化合物抗阿尔茨海默症的作用机制[J]. 上海中医药大学学报,2023, 37(1): 62-69.
ZHANG R, ZHU X, BAI H, et al. Network pharmacology databases for traditional Chinese medicine: review and assessment[J]. Front Pharmacol, 2019, 10: 123.
ZHANG Y, YANG X, GE X, et al. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved Caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice[J]. Biomed Pharmacother, 2019, 109: 726-733.
WU L, TONG T, WAN S, et al. Protective effects of puerarin against Aβ 1-42-induced learning and memory impairments in mice[J]. Planta Med, 2017, 83(3-4): 224-231.
李泽桦,何颖妍,曾宇宏,等. 葛根素在大鼠体内的药代动力学特征和安全性的研究[J]. 中国临床药理学杂志,2023, 39(10): 1480-1484.
许海霞,李强,王玉敏. 中药葛根素对实验性阿尔茨海默病的治疗作用机制研究进展[J]. 中华中医药学刊,2023, 41(5): 29-33.
KUCHAY S, GIORGI C, SIMONESCHI D, et al. PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth[J]. Nature, 2017, 546(7659): 554-558.
XU C, CHEN S, XU M, et al. Cadmium impairs autophagy leading to apoptosis by Ca2+-dependent activation of JNK signaling pathway in neuronal cells[J]. Neurochem Res, 2021, 46(8): 2033-2245.
YIN Q, CHEN H, MA R H, et al. Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress[J]. Food Funct, 2021, 12(12): 5301-5316.
ROSEN L B, GINTY D D, WEBER M J, et al. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras[J]. Neuron, 1994, 12(6): 1207-1221.
BUCHSBAUM R, TELLIEZ J B, GOONESEKERA S, et al. The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium[J]. Mol Cell Biol, 1996, 16(9): 4888-4896.
YANG S, LIU G. Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma[J]. Oncol Lett, 2017, 13(3): 1041-1047.
SETERNES O M, KIDGER A M, KEYSE S M. Dual-specificity MAP kinase phosphatases in health and disease[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(1): 124-143.
SHAUL Y D, SEGER R. The MEK/ERK cascade: from signaling specificity to diverse functions[J]. Biochim Biophys Acta, 2007, 1773(8): 1213-1226.
MARSHALL C J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation[J]. Cell, 1995, 80(2): 179-185.
WAINSTEIN E, SEGER R. The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles[J]. Curr Opin Cell Biol, 2016, 39: 15-20.
GUPTA J, NEBREDA A R. Roles of p38α mitogen-activated protein kinase in mouse models of inflammatory diseases and cancer[J]. FEBS J, 2015, 282(10): 1841-1857.
LIU T, HAN S, DAI Q, et al. IL-17A-Mediated excessive autophagy aggravated neuronal ischemic injuries via Src-PP2B-mTOR Pathway[J]. Front Immunol, 2019, 10: 2952.
D'AMELIO M, CAVALLUCCI V, CECCONI F. Neuronal Caspase-3 signaling: not only cell death[J]. Cell Death Differ, 2010, 17(7): 1104-1114.
KUIDA K, ZHENG T S, NA S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice[J]. Nature, 1996, 384(6607): 368-372.
LOETSCHER H, DEUSCHLE U, BROCKHAUS M, et al. Presenilins are processed by caspase-type proteases[J]. J Biol Chem, 1997, 272(33): 20655-20659.
LOUNEVA N, COHEN J W, HAN L Y, et al. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer's disease[J]. Am J Pathol, 2008, 173(5): 1488-1495.
SCHEFF S W, PRICE D A, SCHMITT F A, et al. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment[J]. Neurology, 2007, 68(18): 1501-1508.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构