1.上海中医药大学附属曙光医院肾病科(上海 201203)
2.上海中医药大学中医肾病研究所,肝肾疾病病证教育部重点实验室(上海 201203)
辛家东,女,博士研究生,主要从事中医药防治慢性肾脏病基础与临床研究工作
高建东,主任医师,教授,博士研究生导师; E-mail: jiandong.gao@shutcm.edu.cn
扫 描 看 全 文
辛家东,高建东.基于尿酸转运蛋白调控机制探讨中药改善高尿酸血症的研究进展[J].上海中医药杂志,2023,57(2):14-20.
XIN Jiadong,GAO Jiandong.Research progress of traditional Chinese medicine in improving hyperuricemia by regulating uric acid transporter[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(2):14-20.
辛家东,高建东.基于尿酸转运蛋白调控机制探讨中药改善高尿酸血症的研究进展[J].上海中医药杂志,2023,57(2):14-20. DOI: 10.16305/j.1007-1334.2023.2211034.
XIN Jiadong,GAO Jiandong.Research progress of traditional Chinese medicine in improving hyperuricemia by regulating uric acid transporter[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(2):14-20. DOI: 10.16305/j.1007-1334.2023.2211034.
综述基于尿酸转运蛋白调控机制探讨中药改善高尿酸血症的实验研究进展。研究发现,中药单体及其有效成分、复方可通过影响尿酸重吸收转运蛋白、尿酸分泌转运蛋白表达,进而发挥降低血尿酸水平的作用。
The research progress of traditional Chinese medicine in improving hyperuricemia by regulating uric acid transporter was reviewed. Studies had found that the traditional Chinese medicine monomers, active components and compounds could reduce the level of serum uric acid by affecting the expression of uric acid reabsorption transporters and uric acid secretion transporters.
高尿酸血症痛风中药尿酸转运蛋白作用机制研究进展
hyperuricemiagouttraditional Chinese herbal medicineuric acid transportermechanism of actionresearch progress
KANG D H, CHEN W. Uric acid and chronic kidney disease: new understanding of an old problem[J]. Semin Nephrol, 2011, 31(5): 447-452.
PETRESKI T, EKART R, HOJS R, et al. Hyperuricemia, the heart, and the kidneys - to treat or not to treat?[J]. Ren Fail, 2020, 42(1): 978-986.
HALPERIN KUHNS V L, WOODWARD O M. Urate transport in health and disease[J]. Best Pract Res Clin Rheumatol, 2021, 35(4): 101717.
ANDIA I, ABATE M. Hyperuricemia in Tendons[J]. Adv Exp Med Biol, 2016, 920: 123-132.
DEHLIN M, JACOBSSON L, RODDY E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors[J]. Nat Rev Rheumatol, 2020, 16(7): 380-390.
SOLTANI Z, RASHEED K, KAPUSTA D R, et al. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal?[J]. Curr Hypertens Rep, 2013, 15(3): 175-181.
JOHNSON R J, NAKAGAWA T, SANCHEZ-LOZADA L G, et al. Sugar, uric acid, and the etiology of diabetes and obesity[J]. Diabetes, 2013, 62(10): 3307-3315.
SATTUI S E, GAFFO A L. Treatment of hyperuricemia in gout: current therapeutic options, latest developments and clinical implications[J]. Ther Adv Musculoskelet Dis, 2016, 8(4): 145-159.
YUAN H Y, ZHANG X H, ZHANG X L, et al. Analysis of patents on anti-gout therapies issued in China[J]. Expert Opin Ther Pat, 2014, 24(5): 555-572.
WANG Z, CUI T, CI X, et al. The effect of polymorphism of uric acid transporters on uric acid transport[J]. J Nephrol, 2019, 32(2): 177-187.
LEE Y S, SUNG Y Y, YUK H J, et al. Anti-hyperuricemic effect of Alpinia oxyphylla seed extract by enhancing uric acid excretion in the kidney[J]. Phytomedicine, 2019, 62: 152975.
ENOMOTO A, KIMURA H, CHAIROUNGDUA A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels[J]. Nature, 2002, 417(6887): 447-452.
HIGASHINO T, MATSUO H, SAKIYAMA M, et al. Common variant of PDZ domain containing 1(PDZK1) gene is associated with gout susceptibility: A replication study and meta-analysis in Japanese population[J]. Drug Metab Pharmacokinet, 2016, 31(6): 464-466.
TAN P K, LIU S, GUNIC E, et al. Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout[J]. Sci Rep, 2017, 7(1): 665.
MISAWA K, HASEGAWA T, MISHIMA E, et al. Contribution of rare variants of the SLC22A12 gene to the missing heritability of serum urate levels[J]. Genetics, 2020, 214(4): 1079-1090.
SHIN H J, TAKEDA M, ENOMOTO A, et al. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs[J]. Nephrology (Carlton),2011, 16(2): 156-162.
NOVIKOV A, FU Y, HUANG W, et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1[J]. Am J Physiol Renal Physiol, 2019, 316(1): F173-F185.
DINOUR D, GRAY N K, CAMPBELL S, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia[J]. J Am Soc Nephrol, 2010, 21(1): 64-72.
XU X, LI C, ZHOU P, et al. Uric acid transporters hiding in the intestine[J]. Pharm Biol, 2016, 54(12): 3151-3155.
CHUNG S, KIM G H. Urate transporters in the kidney: what clinicians need to know[J]. Electrolyte Blood Press, 2021, 19(1): 1-9.
TOYODA Y, MANČÍKOVÁ A, KRYLOV V, et al. Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort[J]. Cells, 2019, 8(4): 363.
FUJITA K, YAMADA H, IIJIMA M, et al. Electrochemical analysis of uric acid excretion to the intestinal lumen: Effect of serum uric acid-lowering drugs and 5/6 nephrectomy on intestinal uric acid levels[J]. PLoS One, 2019, 14(12): e0226918.
KOMORI H, YAMADA K, TAMAI I. Hyperuricemia enhances intracellular urate accumulation via down-regulation of cell-surface BCRP/ABCG2 expression in vascular endothelial cells[J]. Biochim Biophys Acta Biomembr, 2018, 1860(5): 973-980.
MATSUO H, ICHIDA K, TAKADA T, et al. Common dysfunctional variants in ABCG2 are a major cause of early-onset gout[J]. Sci Rep, 2013, 3: 2014.
MATSUO H, TSUNODA T, OOYAMA K, et al. Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2[J]. Sci Rep, 2016, 6: 31003.
YANO H, TAMURA Y, KOBAYASHI K, et al. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease[J]. Clin Exp Nephrol, 2014, 18(1): 50-55.
BHATNAGAR V, RICHARD E L, WU W, et al. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling[J]. Clin Kidney J, 2016, 9(3): 444-453.
NIGAM S K. The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease[J]. Annu Rev Pharmacol Toxicol, 2018, 58: 663-687.
LIU H C, JAMSHIDI N, CHEN Y, et al. An organic anion transporter 1 (OAT1)-centered metabolic network[J]. J Biol Chem, 2016, 291(37): 19474-19486.
WU W, BUSH K T, NIGAM S K. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes[J]. Sci Rep, 2017, 7(1): 4939.
OTANI N, OUCHI M, HAYASHI K, et al. Roles of organic anion transporters (OATs) in renal proximal tubules and their localization[J]. Anat Sci Int, 2017, 92(2): 200-206.
SUN H L, WU Y W, BIAN H G, et al. Function of uric acid transporters and their inhibitors in hyperuricaemia[J]. Front Pharmacol, 2021, 12: 667753.
TANNER C, BOOCOCK J, STAHL E A, et al. Population-specific resequencing associates the ATP-Binding cassette subfamily C member 4 gene with gout in New Zealand Maori and Pacific men[J]. Arthritis Rheumatol, 2017, 69(7): 1461-1469.
DING X, LI M, PENG C, et al. Uric acid transporters BCRP and MRP4 involved in chickens uric acid excretion[J]. BMC Vet Res, 2019, 15(1): 180.
CHIBA T, MATSUO H, KAWAMURA Y, et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout[J]. Arthritis Rheumatol, 2015, 67(1): 281-287.
DONG Z, ZHOU J, JIANG S, et al. Effects of multiple genetic loci on the pathogenesis from serum urate to gout[J]. Sci Rep, 2017, 7: 43614.
JUTABHA P, ANZAI N, WEMPE M F, et al. Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule[J]. Nucleosides Nucleotides Nucleic Acids, 2011, 30(12): 1302-1311.
SUN H L, WU Y W, BIAN H G, et al. Function of uric acid transporters and their inhibitors in hyperuricaemia[J]. Front Pharmacol, 2021, 12: 667753.
JUTABHA P, ANZAI N, KITAMURA K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate[J]. J Biol Chem, 2010, 285(45): 35123-35132.
LI Q, HUANG Z, LIU D, et al. Effect of berberine on hyperuricemia and kidney injury: A network pharmacology analysis and experimental validation in a mouse model[J]. Drug Des Devel Ther, 2021, 15: 3241-3254.
XU L, LIN G, YU Q, et al. Anti-hyperuricemic and nephroprotective effects of dihydroberberine in potassium oxonate-and hypoxanthine-induced hyperuricemic mice[J]. Front Pharmacol, 2021, 12: 645879.
ZHU C, XU Y, LIU Z H, et al. The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice[J]. Biomed Pharmacother, 2018, 97: 168-173.
ZHAO R, CHEN D, WU H. Pu-erh ripened tea resists to hyperuricemia through xanthine oxidase and renal urate transporters in hyperuricemic mice[J]. J Funct Foods, 2017, 29: 201-207.
WANG Y, LIN Z, ZHANG B, et al. Chicory (Cichorium intybus L.) inhibits renal reabsorption by regulating expression of urate transporters in fructose-induced hyperuricemia[J]. J Tradit Chin Med Sci, 2019, 6(1): 84-94.
ZHANG H J, LI L N, ZHOU J, et al. Effects of Gnaphalium affine D. Don on hyperuricemia and acute gouty arthritis[J]. J Ethnopharmacol, 2017, 203: 304-311.
LI L, TENG M, LIU Y, et al. Anti-gouty arthritis and antihyperuricemia effects of sunflower (Helianthus annuus) head extract in gouty and hyperuricemia animal models[J]. Biomed Res Int, 2017, 2017: 5852076.
LIU G, CHEN X, LU X, et al. Sunflower head enzymatic hydrolysate relives hyperuricemia by inhibiting crucial proteins (xanthine oxidase, adenosine deaminase, uric acid transporter1) and restoring gut microbiota in mice[J]. J Funct Foods, 2020, 72: 104055.
HUANG L, DENG J, CHEN G, et al. The anti-hyperuricemic effect of four astilbin stereoisomers in Smilax glabra on hyperuricemic mice[J]. J Ethnopharmacol, 2019, 238: 111777.
YONG T, CHEN S, XIE Y, et al. Hypouricemic effects of extracts from Agrocybe aegerita on hyperuricemia mice and virtual prediction of bioactives by molecular docking[J]. Front Pharmacol, 2018, 9: 498.
HAN S, WEI R, HAN D, et al. Hypouricemic effects of extracts from Urtica hyperborea Jacq. ex Wedd. in hyperuricemia mice through XOD, URAT1, and OAT1[J]. Biomed Res Int, 2020, 2020: 2968135.
FANG C, CHEN L, HE M, et al. Molecular mechanistic insight into the anti-hyperuricemic effect of Eucommia ulmoides in mice and rats[J]. Pharm Biol, 2019, 57(1): 112-119.
FEI Y, YE D, FAN X F, et al. Effect of Dioscorea tokoro Makino extract on hyperuricemia in mice[J]. Trop J Pharm Res, 2016, 15(9): 1883-1887.
YONG T, CHEN S, XIE Y, et al. Hypouricemic effects of ganoderma applanatum in hyperuricemia mice through OAT1 and GLUT9[J]. Front Pharmacol, 2018, 8: 996.
SHI Y W, WANG C P, WANG X, et al. Uricosuric and nephroprotective properties of Ramulus Mori ethanol extract in hyperuricemic mice[J]. J Ethnopharmacol, 2012, 143(3): 896-904.
AN Y, HAO J, LI J, et al. The inhibitory effect of lotus leaf extract on hyperuricemia and its potential mechanism[J]. Acupunc Herb Med, 2021, 1(2): 122-129.
ZHANG K, WANG M, WEI L, et al. Investigation of the effects and mechanisms of dendrobium loddigesii rolfe extract on the treatment of gout[J]. Evid Based Complement Alternat Med, 2020, 2020: 4367347.
PANG M, FANG Y, CHEN S, et al. Gypenosides inhibits xanthine oxidoreductase and ameliorates urate excretion in hyperuricemic rats induced by high cholesterol and high fat food (lipid emulsion)[J]. Med Sci Monit, 2017, 23: 1129-1140.
HU Q H, JIAO R Q, WANG X, et al. Simiao pill ameliorates urate underexcretion and renal dysfunction in hyperuricemic mice[J]. J Ethnopharmacol, 2010, 128(3): 685-692
HUA J, HUANG P, ZHU C M, et al. Anti-hyperuricemic and nephroprotective effects of Modified Simiao Decoction in hyperuricemic mice[J]. J Ethnopharmacol, 2012, 142(1): 248-252.
WANG R, MA C H, ZHOU F, et al. Siwu decoction attenuates oxonate-induced hyperuricemia and kidney inflammation in mice[J]. Chin J Nat Med, 2016, 14(7): 499-507.
ZHANG W, DU W, LI G, et al. Constituents and anti-hyperuricemia mechanismof traditional Chinese herbal formulae erding granule[J]. Molecules, 2019, 24(18): 3248.
DING X Q, PAN Y, WANG X, et al. Wuling san ameliorates urate under-excretion and renal dysfunction in hyperuricemic mice[J]. Chin J Nat Med, 2013, 11(3): 214-221.
YANG Y, ZHANG D M, LIU J H, et al. Wuling San protects kidney dysfunction by inhibiting renal TLR4/MyD88 signaling and NLRP3 inflammasome activation in high fructose-induced hyperuricemic mice[J]. J Ethnopharmacol, 2015, 169: 49-59.
0
浏览量
564
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构