1.上海中医药大学附属岳阳中西医结合医院肛肠科(上海 200437)
干丹,女,硕士,主治医师,主要从事中西医结合治疗肛肠疾病临床与研究工作
王振宜,主任医师,教授,博士研究生导师; E-mail:drxinhuo@163.com
扫 描 看 全 文
干丹,杨豪杰,黄冕,等.胆汁酸代谢及其受体调节溃疡性结肠炎肠道免疫及中药干预研究进展[J].上海中医药杂志,2023,57(9):96-100.
GAN Dan,YANG Haojie,HUANG Mian,et al.Research progress on bile acid metabolism and its receptors regulating intestinal immunity in ulcerative colitis and traditional Chinese herbal medicine intervention[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(9):96-100.
干丹,杨豪杰,黄冕,等.胆汁酸代谢及其受体调节溃疡性结肠炎肠道免疫及中药干预研究进展[J].上海中医药杂志,2023,57(9):96-100. DOI: 10.16305/j.1007-1334.2023.2211019.
GAN Dan,YANG Haojie,HUANG Mian,et al.Research progress on bile acid metabolism and its receptors regulating intestinal immunity in ulcerative colitis and traditional Chinese herbal medicine intervention[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(9):96-100. DOI: 10.16305/j.1007-1334.2023.2211019.
溃疡性结肠炎(UC)是一种慢性免疫介导的肠道炎症性疾病,由宿主遗传、环境因素和肠道菌群失调等因素相互作用引起,有导致结直肠癌的风险。特定细菌代谢产物胆汁酸可作为信号转导分子影响机体对肠道炎症的敏感性,胆汁酸信号转导异常可能是UC免疫反应失调的促成因素。近年来,中药(单味中药或其提取物、中药药对、中药复方)干预胆汁酸代谢及其受体的研究颇受关注。综述胆汁酸代谢及其受体调节UC肠道免疫研究进展,以及中药对胆汁酸代谢及其受体的干预作用,以期为UC的临床诊疗提供思路。
Ulcerative colitis (UC) is a chronic immune-mediated intestinal inflammatory disease caused by complex interactions among host genetic risk factors, environmental factors and gut microbiota imbalance, and can increase the risk of colorectal cancer. Specific bacterial metabolites, bile acids, can act as signal transduction molecules that affect the susceptibility of the host to intestinal inflammation. Dysregulated bile acid signaling may contribute to the dysregulation of the immune response in UC patients. In recent years, there has been considerable interest in the study of traditional Chinese herbal medicines (single herbs or extracts, herbal pairs and herbal formulas) interfering with bile acid metabolism and its receptors. We review the advances in the studies of bile acid metabolism and its receptors regulating intestinal immunity in UC patients and the intervention of traditional Chinese herbal medicines on bile acid metabolism and its receptors in order to provide ideas for the clinical treatment of ulcerative colitis.
溃疡性结肠炎胆汁酸代谢产物肠道菌群肠道免疫中药
ulcerative colitisbile acidmetabolitesgut microbiotaintestinal immunitytraditional Chinese herbal medicine
BELOQUI A, MEMVANGA P, COCO R, et al. A comparative study of curcumin-loaded lipid-based nano carriers in the treatment of inflammatory bowel disease[J]. Colloids Surf B Biointerfaces, 2016, 143: 327-335.
CAZARIN C B, DA SILVA J K, COLOMEU T C, et al. Passiflora edulis peel intake and ulcerative colitis: approaches for prevention and treatment[J]. Exp Biol Med (Maywood), 2014, 239(5): 542-551.
XAVIER R J, PODOLSKY D K. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152): 427434.
POSTLER T S, GHOSH S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system[J]. Cell Metab, 2017, 26(1): 110-130.
KUIPERS F, DE BOER J F, STAELS B. Microbiome modulation of the host adaptive immunity through bile acid modification[J]. Cell Metab, 2020, 31(3): 445-447.
SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670.
SONG X Y, SUN X M, OH S F, et al. Microbial bile acid metabolites modulate gut RORγ (+) regulatory T cell homeostasis[J]. Nature, 2020, 577(7790): 410-415.
DUBOC H, RAJCA S, RAINTEAU D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases[J]. Gut, 2013, 62(4): 531-539.
于爽,顾志敏,樊亚东,等. 胆汁酸免疫调节作用及其与肠道、肝脏炎症性疾病相关性的研究进展[J]. 中国免疫学杂志,2022, 38(16): 2031-2036.
CHIANG J Y. Bile acid metabolism and signaling[J]. Compr Physiol, 2013, 3(3): 1191-1212.
FIORUCCI S, BALDONI M, RICCI P, et al. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders[J]. Curr Opin Pharmacol, 2020, 53: 45-54.
FIORUCCI S, DISTRUTTI E, CARINO A, et al. Bile acids and their receptors in metabolic disorders[J]. Prog Lipid Res, 2021, 82: 101094.
LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237.
MICHAUDEL C, SOKOL H. The Gut microbiota at the service of immunometabolism[J]. Cell Metab, 2020, 32(4): 514-523.
THOMAS J P, MODOS D, RUSHBROOK S M, et al. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease[J]. Front Immunol, 2022, 13: 829525.
杨亚慧,覃丽梅,朱晓萍,等. 胆汁酸受体介导胆汁酸调控肠道屏障功能的机制[J]. 广东畜牧兽医科技,2022, 47(4): 47-54.
张阳,李军祥,王允亮. 胆汁酸代谢及其受体在非酒精性脂肪性肝病发生发展中的作用[J]. 临床肝胆病杂志,2020, 36(6): 1374-1377.
DING L, YANG L, WANG Z T, et al. Bile acid nuclear receptor FXR and digestive system diseases[J]. Acta Pharm Sinica B, 2015, 5(2) : 135-144.
CUI J Y, ALEKSUNES L M, TANAKA Y, et al. Bile acids via FXR initiate the expression of major transporters involved in the enterohepatic circulation of bile acids in newborn mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(9) : 979-996.
FEROLLA S M, ARMILIATO G N, COUTO C A, et al. The role of intestinal bacteria overgrowth in obesity-related nonalcoholic fatty liver disease[J]. Nutrients, 2014, 6(12): 5583-5599.
GADALETA E, LEMOINE N R, CHELALA C. Online resources of cancer data: barriers, benefits and lessons[J]. Brief Bioinform, 2011, 12(1): 52-63.
毛佳玉. 胆汁酸核受体FXR调控结直肠癌Wnt/β-catenin信号通路的机制研究[D]. 北京:北京协和医学院,2017.
WINSTON J A, THERIOT C M. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract[J]. Anaerobe, 2016, 41: 44-50.
COPPLE B L, LI T. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules[J]. Pharmacol Res, 2016, 104: 9-21.
STAUDINGER J L, GOODWIN B, JONES S A, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity[J]. Proc Natl Acad Sci USA, 2001,98(6): 3369-3374.
MOORE L B, MAGLICH J M, MCKEE D D, et al. Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors[J]. Mol Endocrinol, 2002, 16(5): 977-986.
SHAH Y M, MA X, MORIMURA K, et al. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(4): G1114-G1122.
MENCARELLI A, RENGA B, PALLADINO G, A. et al. Inhibition of NF-κB by a PXR dependent pathway mediates counter-regulatory activities of rifaximin on innate immunity in intestinal epithelial cells[J]. Eur J Pharmacol, 2011, 668(1-2): 317-324.
赵亚娇,李楠. IL-6/STAT3信号通路在溃疡性结肠炎治疗中的新进展[J]. 中华消化病与影像杂志(电子版),2015, 5(4): 207-210.
WILSON A, ALMOUSA A, TEFT W A, et al. Attenuation of bile acid-mediated FXR and PXR activation in patients with Crohn's disease[J]. Sci Rep, 2020,10(1): 1866.
KIM J H, YAMAORI S, TANABE T, et al. Implication of intestinal VDR deficiency in inflammatory bowel disease[J]. Biochim Biophys Acta, 2013, 1830(1): 2118-2128.
WADA T, GAO J, XIE W. PXR and CAR in energy metabolism[J].Trends Endocrinol Metab, 2009, 20(6): 273-279.
FRANZOSA E A, SIROTA-MADI A, AVILA-PACHECO J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nat Microbiol, 2019, 4(2): 293-305.
LLOYD-PRICE J, ARZE C, ANANTHAKRISHNAN A N, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662.
陈思平,韩丽,舒鹏,等. 胆汁酸膜受体TGR5在胆道疾病中的研究进展[J]. 临床肝胆病杂志,2022, 38(3): 724-728.
FIORUCCI S, BIAGIOLI M, ZAMPELLA A, et al. Bile acids activated receptors regulate innate immunity[J]. Front Immunol, 2018, 9: 1853.
PERINO A, DEMAGNY H, VELAZQUEZ-VILLEGAS L, et al. Molecular physiology of bile acid signaling in health, disease, and aging[J]. Physiol Rev, 2021, 101(2): 683-731.
KEITEL V, STINDT J, HÄUSSINGER D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors[J]. Handb Exp Pharmacol, 2019, 256: 19-49.
POLS T W, NORIEGA L G, NOMURA M, et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation[J]. J Hepatol, 2011, 54(6): 1263-1272.
鲁旭,韩涛,田垚,等. 肠道菌群和胆汁酸代谢对非酒精性脂肪性肝病发生发展的作用[J]. 临床肝胆病杂志,2014, 30(11): 1225-1228.
舒祥兵,赵燕婷,杨志新. 降脂颗粒联合生活方式干预治疗湿热蕴结型非酒精性脂肪性肝病的临床观察[J]. 上海中医药杂志,2023, 57(2): 35-40.
SONNENBURG J L, BÄCKHED F. Diet-microbiota interactions as moderators of human metabolism[J]. Nature, 2016, 535(7610): 56-64.
曾忠花,刘容容,汤俐,等. 肠道菌群与胆汁酸代谢的互相作用[J]. 中国微生态学杂志,2021, 33(7): 849-856.
宋波,文国琴,王蔺. 胆汁酸代谢与肠道微生物[J]. 微生物学杂志,2021, 41(3): 107-112.
LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237.
MACHIELS K, JOOSSENS M, SABINO J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis[J]. Gut, 2014, 63(8): 1275-1283.
YANG Z H, LIU F, ZHU X R, et al. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis[J]. World J Gastroenterol, 2021, 27(24): 3609-3629.
SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670.
HOFMANN A F. The continuing importance of bile acids in liver and intestinal disease[J]. Arch Intern Med, 1999, 159(22): 2647-2658.
BENNET J D. Ulcerative colitis: the result of an altered bacterial metabolism of bile acids or cholesterol[J]. Med Hypotheses, 1986, 20(2): 125-132.
张聪聪,吴俊芳,王玉兰. 不同性别C57BL/6小鼠肠道胆汁酸组成的差异性研究[J]. 波谱学杂志,2018, 35(3): 326-337.
BIAGIOLI M, MARCHIANÒ S, CARINO A, et al. Bile acids activated receptors in inflammatory bowel disease[J]. Cells, 2021, 10(6): 1281.
彭诗涛,刘振丽,王淳,等. 基于初级胆汁酸合成探讨乳香醋炙对溃疡性结肠炎的增效机制[J]. 中草药,2022, 53(1): 107-116.
王欣,朱敏,董思晶,等. 芍药苷对结肠炎小鼠肠道菌群及胆汁酸代谢的调节作用[J].药学学报,2021, 56(7): 1811-1819.
刘毓,张聪聪,胡永红,等. 栀子苷对大鼠肝损伤及血清、肝脏、粪便中胆汁酸的影响[J]. 中国实验方剂学杂志,2021, 27(11): 63-75.
LIU J, LI Y, SUN C, et al. Geniposide reduces cholesterol accumulation and increases its excretion by regulating the FXR-mediated liver-gut crosstalk of bile acids[J]. Pharmacol Res, 2020, 152: 104631.
YAN X, ZHANG Y, PENG Y, et al. The water extract of Radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice[J]. J Ethnopharmacol, 2022, 293: 115238.
周涛,王宇光,马增春,等. 银杏内酯B通过激活孕烷X受体诱导CYP3A4的表达[J].中国药理学通报,2014, 30(7): 926-931.
王艳天,顾欣,王帆,等. 柴参解郁汤对腹泻型肠易激综合征小鼠粪便胆汁酸代谢轮廓的影响[J]. 南京中医药大学学报,2022, 38(3): 220-227.
赵元辰,崔乃强,关鑫,等. 柴芩四君子汤对胆囊切除术后患者粪胆汁酸代谢的影响[J].中国中西医结合外科杂志,2022, 28(4): 543-549.
李婉华,张桂贤,聂卫,等. 加味茵陈蒿汤对大鼠胆汁淤积性肝病的治疗作用[J]. 中国实验方剂学杂志,2020, 26(4): 29-34.
刘凯利,张强,李军辉,等. 柴胡人参药对通过调控胆汁酸代谢防治非酒精性脂肪肝的研究[J]. 中华中医药学刊,2022, 40(3): 101-106.
王凯. 黄芪红花配伍调控肠道菌群影响胆汁酸代谢发挥脑保护作用的机制研究[D]. 西安:陕西中医药大学,2021.
徐路. 基于FXR/FGF15/FGFR4通路研究黄连吴茱萸配伍调控胆汁酸代谢发挥降脂效应的作用机制[D]. 成都:成都中医药大学,2020.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构