1.上海中医药大学光华临床医学院(上海 201203)
2.上海市光华中西医结合医院(上海 200052)
3.复旦大学附属华山医院(上海 200040)
4.辽宁省营口市中医院(辽宁 营口 115002)
5.浙江省立同德医院(浙江 杭州 310012)
6.上海中医药大学附属市中医医院(上海 200071)
7.内蒙古医科大学附属医院(内蒙古 呼和浩特 750306)
8.山东省海阳市中医医院(山东 海阳 265199)
9.重庆西南医院(重庆 400038)
10.山东省烟台市中医医院(山东 烟台 264013)
11.云南省中医医院(云南 昆明 650021)
12.辽宁省中医院(辽宁 沈阳 110033)
13.上海中医药大学附属龙华医院(上海 200032)
14.上海市长宁区新泾镇街道社区卫生服务中心(上海 200336)
15.中日友好医院(北京 100029)
16.重庆市第九人民医院(重庆 400799)
17.新疆维吾尔自治区中医医院(新疆 乌鲁木齐 830099)
18.黑龙江中医药大学附属第一医院(黑龙江 哈尔滨 150040)
19.北京中医药大学东方医院(北京 100078)
20.四川省绵阳市中医医院(四川 绵阳 621053)
21.中国中医科学院广安门医院(北京 100053)
22.上海中医药大学附属岳阳中西医结合医院(上海 200083)
23.广东省深圳市中医院(广东 深圳 518005)
姜平,男,博士研究生,主要从事类风湿关节炎的临床和实验研究工作
何东仪,主任医师,教授,博士研究生导师; E-mail:hedongyi1967@shutcm.edu.cn
扫 描 看 全 文
姜平,吴心瑶,杜星辰,等.基于数据挖掘、网络药理学的中医药治疗痛风遣方用药规律和作用机制[J].上海中医药杂志,2023,57(4):72-82.
JIANG Ping,WU Xinyao,DU Xingchen,et al.Data mining and network pharmacology: prescription formulation rules and mechanism of traditional Chinese medicine for gout[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(4):72-82.
姜平,吴心瑶,杜星辰,等.基于数据挖掘、网络药理学的中医药治疗痛风遣方用药规律和作用机制[J].上海中医药杂志,2023,57(4):72-82. DOI: 10.16305/j.1007-1334.2023.2210008.
JIANG Ping,WU Xinyao,DU Xingchen,et al.Data mining and network pharmacology: prescription formulation rules and mechanism of traditional Chinese medicine for gout[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(4):72-82. DOI: 10.16305/j.1007-1334.2023.2210008.
目的,2,借助数据挖掘、网络药理学方法,分析探讨中医药治疗痛风的遣方用药规律及相关中药的分子作用机制。,方法,2,回顾性分析以上海市光华中西医结合医院为牵头单位的全国10个地区(省、自治区、直辖市)的22家医院的痛风患者的就诊资料,提取中药名称、药味、药性、归经、功效等信息,采用Microsoft Excel 2019软件进行频次、频率分析,借助SPSS Modeler 18.0及SPSS Statistics 20.0软件对高频用药进行关联规则和系统聚类分析。在数据挖掘结果的基础上,借助中药系统药理学数据库与分析平台(TCMSP)、中医药整合药理学研究平台(TCMIP)、中医药百科全书(ETCM)和本草组鉴(Herb)等多个数据库获取中药的有效成分并进行筛选。通过小分子生物活性数据(PubChem)得到中药活性成分的Canonical SMILE结构式,然后导入SwissTargetPrediction数据库预测活性成分的作用靶基因,通过人类基因综合数据库(GeneCards)、药物靶标数据库(TTD)、DisGeNET数据库、人类孟德尔遗传数据库(OMIM)以及药物遗传学和药物基因组学知识库(PharmGKB)检索与痛风相关的疾病基因,然后进行交集分析获得共同基因,借助Cytoscape 3.7.2软件获得中药治疗痛风的核心基因。采用Cytoscape 3.7.2软件进行通路分析、关联分析,并构建“药物-成分-基因-信号通路”网络。,结果,2,①本研究共收集2 688例痛风患者的临床数据,获得中药处方659首,涉及中药266味,其中高频用药(包括土茯苓、薏苡仁、川牛膝、苍术、黄柏、秦艽、独活、威灵仙等)36味。②临床治疗痛风的中药药味以甘、苦、辛为主,药性以寒、平、温为多,主要归于肝、肺、胃、脾、肾经,功效以清热、补虚、利水渗湿、活血化瘀和祛风湿为主。③关联规则显示,临床治疗痛风常用的药物组合有土茯苓-薏苡仁、苍术-黄柏等;系统聚类分析形成6个新的药物组合,其中地龙、鳖甲、秦艽、川牛膝、薏苡仁、土茯苓可能是治疗痛风的核心药方。④网络药理学分析结果显示,黄芩素、汉黄芩素、槲皮素、山柰酚可能是治疗痛风的关键成分,这些成分可能作用于肿瘤坏死因子(,TNF,)、丝氨酸/苏氨酸激酶1(,AKT1,)、白介素-6(,IL,-,6,)、鸡肉瘤病毒(,SRC,)等基因,并通过调控凋亡、转化生长因子-β(TGF-β)等多条通路来发挥治疗作用。,结论,2,中医治疗痛风遵循标本兼治原则,以清热补虚为主,兼以利水渗湿、活血化瘀;中药治疗痛风主要是通过作用于,TNF,、,AKT1,、,IL,-,6,、,SRC,关键基因并调控凋亡、坏死性凋亡、TGF-β信号通路来实现的。
Objective,2,To analyze the prescription formulation rules of traditional Chinese medicine (TCM) and the molecular mechanism of relevant traditional Chinese herbal medicines (TCHMs) for the treatment of gout based on a data mining analysis and a network pharmacology approach.,Methods,2,With Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine as the initiator, consultation data of gout patients from 22 hospitals in 10 provinces (including autonomous regions and municipalities directly under the central government) across China were retrospectively analyzed to extract information on the names, tastes, properties, meridian tropism and effects of traditional Chinese herbal medicines (TCHMs). Microsoft Excel 2019 was used for analysis of frequency and relative frequency, and SPSS Modeler 18.0 and SPSS Statistics 20.0 were used for association rules and systematic cluster analysis of high-frequency TCHMs. Based on the data mining results, the active components of TCHMs were obtained from databases including Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP), Encyclopedia of Traditional Chinese Medicine (ETCM) and Herb, and they were filtered thereafter. The Canonical SMILES format of active components of TCHMs was obtained from PubChem and then imported into SwissTargetPrediction database to predict the target genes of the active components. The disease genes associated with gout were retrieved from databases including GeneCards, Therapeutic Target Database (TTD), DisGeNET data, Online Mendelian Inheritance in Man (OMIM) and Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB), and then intersect analysis was conducted to obtain common genes. Cytoscape 3.7.2 was used to obtain the core genes for the treatment of gout with TCHMs, perform pathway analysis and association analysis, and construct a “herb-component-gene-signaling pathway” network.,Results,2,①In this study, clinical data of 2,688 gout patients were collected, and 659 prescriptions involving 266 TCHMs were obtained, including 36 high-frequency TCHMs [Tufuling (Smilacis Glabrae Rhizoma), Yiyiren (Coicis Semen), Chuanniuxi (Cyathulae Radix), Cangzhu (Atractylodis Rhizoma), Huangbo (Phellodendri Chinensis Cortex), Qinjiao (Gentianae Macrophyllae Radix), Duhuo (Angelicae Pubescentis Radix), and Weilingxian (Clematis Radix et Rhizoma), etc.]. ②TCHMs for the treatment of gout were mainly sweet, bitter and pungent in taste, and cold, neutral and warm in nature, manifesting their therapeutic effects on the liver, lung, stomach, spleen and kidney meridians in preference, with the effects of clearing heat, tonifying deficiency, promoting diuresis and defusing dampness, activating blood circulation and resolving stasis and dispelling wind-dampness. ③The association rules showed that the medicinal combinations commonly used in the clinical treatment of gout were Tufuling (Smilacis Glabrae Rhizoma)-Yiyiren (Coicis Semen) and Cangzhu (Atractylodis Rhizoma)-Huangbo (Phellodendri Chinensis Cortex), etc. According to systematic cluster analysis, 6 new medicinal combinations were formed and the core prescription for gout might include Dilong (Pheretima), Biejia (Trionycis Carapax), Qinjiao (Gentianae Macrophyllae Radix), Chuanniuxi (Cyathulae Radix), Yiyiren (Coicis Semen) and Tufuling (Smilacis Glabrae Rhizoma). ④The results of the network pharmacological analysis showed that baicalin, wogonin, quercetin, and kaempferol might be the key components for the treatment of gout, which could act on genes such as tumor necrosis factor (,TNF,), serine/threonine kinase 1 (,AKT1,), interleukin-6 (,IL,-,6,) and sarcoma (,SRC,), etc., and these components exerted their therapeutic effects through regulating apoptosis, transforming growth factor-β (TGF-β), and other multiple pathways.,Conclusions,2,TCM treatment of gout follows the principle of treating both the manifestations and the root cause. The main method is clearing heat and tonifying deficiency, which is supported by promoting diuresis and defusing dampness, as well as activating blood circulation and resolving stasis. The treatment of gout with TCHMs is mainly achieved by acting on key genes such as TNF, AKT1, IL-6 and SRC and by regulating apoptosis, necroptosis, TGF-β and other signaling pathways.
痛风高尿酸血症数据挖掘网络药理学中医药疗法中药研究
gouthyperuricemiadata miningnetwork pharmacologytraditional Chinese medicine therapyresearch of traditional Chinese herbal medicine
DALBETH N, GOSLING A L, GAFFO A, et al. Gout[J]. Lancet, 2021, 397(10287): 1843-1855.
RICHETTE P, DOHERTY M, PASCUAL E, et al. 2018 updated European League Against Rheumatism evidence-based recommendations for the diagnosis of gout[J]. Ann Rheum Dis, 2020, 79(1): 31-38.
QASEEM A, MCLEAN R M, STARKEY M, et al. Diagnosis of acute gout: a clinical practice guideline from the American college of physicians[J]. Ann Intern Med, 2017, 166(1): 52-57.
CORBETT E J M, PENTONY P, MCGILL N W. Achieving serum urate targets in gout: an audit in a gout-oriented rheumatology practice[J]. Int J Rheum Dis, 2017, 20(7): 894-897.
黄正阳,张弘菁,朱冬雨,等.基于数据挖掘的《普济方》治疗中风用药规律研究[J].上海中医药杂志,2022, 56(12): 23-26.
WALLACE S L, ROBINSON H, MASI A T, et al. Preliminary criteria for the classification of the acute arthritis of primary gout[J]. Arthritis Rheum, 1977, 20(3): 895-900.
国家药典委员会. 中华人民共和国药典(2020年版):一部[M]. 北京:中国医药科技出版社,2020.
钟赣生. 中药学[M]. 北京:中国中医药出版社,2016.
蔡伟杰,张晓辉,朱建秋,等. 关联规则挖掘综述[J]. 计算机工程,2001, 27(5): 31-33.
张文,崔杨波,李健,等. 基于聚类矩阵近似的协同过滤推荐研究[J]. 运筹与管理, 2020, 29(4): 171-178.
王慧,简绍勇,李娟,等. 三种统计分析方法在数学建模中的应用浅谈[J]. 科学咨询(教育科研),2020(42): 95-96.
RU J, LI P, WANG J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Chemin-formatics, 2014, 6: 13.
XU H Y, ZHANG Y Q, LIU Z M, et al. ETCM: an encyclopaedia of traditional Chinese medicine[J]. Nucleic Acids Res, 2019, 47(D1): D976-D982.
KIM S, CHEN J, CHENG T, et al. PubChem 2019 update: improved access to chemical data[J]. Nucleic Acids Res, 2019, 47(D1): D1102-D1109.
DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47(W1): W357-W364.
Uniprot Consortium T. UniProt:the universal protein knowledgebase[J]. Nucleic Acids Res, 2018, 46(5): 2699.
STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinforma, 2016, 54: 1.30.1-1.30.33.
ZHOU Y, ZHANG Y T, LIAN X C, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents[J]. Nucleic Acids Research, 2022, 50(D1): 1398-1407.
PINERO J, RAMIREZ-ANGUITA J M, SAUCH-PITARCH J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update[J]. Nucleic Acids Res, 2020, 48(D1): D845-D855.
AMBERGER J S, HAMOSH A. Searching online mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes[J]. Curr Protoc Bioinformatics, 2017, 58: 1.2.1-1.2.12.
WHIRL-CARRILLOL M, HUDDARTL R, GONG L, et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine[J]. Clin Pharmacol Ther, 2021, 110(3): 563-572.
吴彤,贾春华. “痛风病”中医病因病机的隐喻分析[J]. 世界科学技术-中医药现代化,2017, 19(9): 1494-1497.
匡剑韧,蒋毅,邹庆华. 土茯苓单味辅助治疗湿热蕴结型急性痛风性关节炎临床疗效[J].临床合理用药杂志,2020, 13(19): 18-20.
刘睿,胡家才. 黄柏对尿酸性肾病大鼠的影响及机制[J]. 武汉大学学报(医学版),2011, 32(2): 180-182,282.
DINDA B, DINDA S, DASSHARMA S, et al. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders[J]. Eur J Med Chem, 2017, 131: 68-80.
SHARIFI-RAD J, HERRERA-BRAVO J, SALAZAR L A, et al. The Therapeutic potential of Wogonin observed in preclinical studies[J/OL]. Evid Based Complement Alternat Med, 2021: 9935451[2021-09-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221866/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221866/.
HUYNH D L, NGAU T H, NGUYEN N H, et al. Potential therapeutic and pharmacological effects of Wogonin: an updated review[J]. Mol Biol Rep, 2020, 47(12): 9779-9789.
YU W, XU Z, GAO Q, et al. Protective role of wogonin against cadmium induced testicular toxicity: Involvement of antioxidant, anti-inflammatory and anti-apoptotic pathways[J]. Life Sci, 2020, 258: 118192.
ZHUANG J, PENG Y, GU C, et al. Wogonin accelerates hematoma clearance and improves neurological outcome via the PPAR-γ pathway after intracerebral hemorrhage[J]. Transl Stroke Res, 2021, 12(4): 660-675.
HUANG Y, GUO L, CHITTI R, et al. Wogociceptive effect of diclofend’s adjuvant induced rheumatoid arthritis via targeting NF-κB/MAPK signaling pathway[J]. Biofactors, 2020, 46(2): 283-291.
VENTURA-MARTINEZ R, DECIGA-CAMPOS M, BUSTAMANTE-MARQUINA A, et al. Quercetin decreases the antinociceptive effect of diclofenac in an arthritic gout-pain model in rats[J]. J Pharm Pharmacol, 2021, 73(10): 1310-1318.
RUIZ-MIYAZAWA K W, STAURENGO-FERRARI L, MIZOKAMI S S, et al. Quercetin inhibits gout arthritis in mice: induction of an opioid-dependent regulation of inflammasome[J/OL]. Inflammopharmacology, 2017[2021-09-01]. https://pubmed.ncbi.nlm.nih.gov/28508104/https://pubmed.ncbi.nlm.nih.gov/28508104/.
FAN Y, LIU W, JIN Y, et al. Integrated molecular docking with network pharmacology to reveal the molecular mechanism of simiao powder in the treatment of acute gouty arthritis[J/OL]. Evid Based Complement Alternat Med, 2021: 5570968[2021-09-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100412/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100412/.
RABELO C F, BAPTISTA T S A, PETERSEN L E, et al. Serum IL-6 correlates with axial mobility index (Bath Ankylosing Spondylitis Metrology Index) in Brazilian patients with ankylosing spondylitis[J]. Open Access Rheumatol, 2018, 10: 21-25.
LAAVOLA M, LEPPANEN T, HAMALAINEN M, et al. IL-6 in osteoarthritis: effects of pine stilbenoids[J]. Molecules, 2018, 24(1): 109.
PATSALOS O, DALTON B, HIMMERICH H. Effects of IL-6 signaling pathway inhibition on weight and BMI: a systematic review and meta-analysis[J]. Int J Mol Sci, 2020, 21(17): 6290.
DAI X J, TAO J H, FANG X, et al. Changes of Treg/Th17 ratio in spleen of acute gouty arthritis rat induced by MSU crystals[J]. Inflammation, 2018, 41(5): 1955-1964.
OH K K, ADNAN M, CHO D H. Network pharmacology study on Morus alba L. leaves: pivotal functions of bioactives on RAS signaling pathway and its associated target proteins against gout[J]. Int J Mol Sci, 2021, 22(17): 9372.
LIU R, AUPPERLE K, TERKELTAUB R. Src family protein tyrosine kinase signaling mediates monosodium urate crystal-induced IL-8 expression by monocytic THP-1 cells[J]. J Leukoc Biol, 2001, 70(6): 961-968.
KIM S K, CHOE J Y, PARK K Y. Enhanced p62 is responsible for mitochondrial pathway-dependent apoptosis and interleukin-1β production at the early phase by monosodium urate crystals in murine macrophage[J]. Inflammation, 2016, 39(5): 1603-1616.
潘显阳,陶金辉,李向培. 痛风性关节炎发病的炎性机制研究进展[J]. 安徽医科大学学报,2021, 56(7): 1167-1171.
ROSE D M, SYDLASKE A D, AGHA-BABAKHANI A, et al. Transglutaminase 2 limits murine peritoneal acute gout-like inflammation by regulating macrophage clearance of apoptotic neutrophils[J]. Arthritis Rheum, 2006, 54(10): 3363-3371.
CHEN Y H, HSIEH S C, CHEN W Y, et al. Spontaneous resolution of acute gouty arthritis is associated with rapid induction of the anti-inflammatory factors TGF-β1, IL-10 and soluble TNF receptors and the intracellular cytokine negative regulators CIS and SOCS3[J]. Ann Rheum Dis, 2011, 70(9): 1655-1663.
STEIGER S, HARPER J L. Mechanisms of spontaneous resolution of acute gouty inflammation[J]. Curr Rheumatol Rep, 2014, 16(1): 392.
TRAVIS M A, SHEPPARD D. TGF-β activation and function in immunity[J]. Annu Rev Immunol, 2014, 32: 51-82.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构