1.上海中医药大学交叉科学研究院(上海 201203)
张兴莉,女,硕士研究生,主要从事天然活性产物抗卵巢癌研究工作
房冬冬,副研究员,硕士研究生导师; E-mail: wldxk_zj@163.com
扫 描 看 全 文
张兴莉,周钱梅,陆奕宇,等.上皮间质转化在卵巢癌耐药中的作用及中药干预研究进展[J].上海中医药杂志,2023,57(6):20-25.
ZHANG Xingli,ZHOU Qianmei,LU Yiyu,et al.Research progress on epithelial⁃mesenchymal transition in drug resistance of ovarian cancer and intervention of traditional Chinese medicine[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(6):20-25.
张兴莉,周钱梅,陆奕宇,等.上皮间质转化在卵巢癌耐药中的作用及中药干预研究进展[J].上海中医药杂志,2023,57(6):20-25. DOI: 10.16305/j.1007-1334.2023.2209084.
ZHANG Xingli,ZHOU Qianmei,LU Yiyu,et al.Research progress on epithelial⁃mesenchymal transition in drug resistance of ovarian cancer and intervention of traditional Chinese medicine[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(6):20-25. DOI: 10.16305/j.1007-1334.2023.2209084.
综述靶向上皮间质转化(EMT)与卵巢癌耐药相关性及中药干预研究进展。近年来,越来越多的研究报道EMT与卵巢癌的耐药密切相关,其相关机制主要涉及信号通路、外泌体、微小核糖核酸(miRNA)、长链非编码核酸(lncRNA)、免疫等。一些中药及其有效成分具有抗肿瘤作用,且在干预EMT引起的卵巢癌耐药中取得良好效果,具有潜在的应用价值。
Research progress on epithelial-mesenchymal transition (EMT) in drug resistance of ovarian cancer and intervention of traditional Chinese medicine was reviewed. In recent years, more and more studies have reported that EMT closely related to drug resistance in ovarian cancer, and its related mechanisms mainly involve signaling pathways, exosomes, miRNA, lncRNA, immunity and so on. Some traditional Chinese medicines and their active ingredients play anti-tumor effects and a good ameliorating role in intervening the drug resistance of ovarian cancer caused by EMT, which has potential application value.
卵巢癌上皮间质转化耐药机制中药研究进展
ovarian cancerepithelial-mesenchymal transitiondrug resistance mechanismstraditional Chinese medicineresearch progress
HE R, ZHU B, LIU J, et al. Women’s cancers in China: a spatio-temporal epidemiology analysis[J]. BMC Womens Health, 2021, 21(1): 116.
JAYSON G C, KOHN E C, KITCHENER H C, et al. Ovarian cancer[J]. Lancet, 2014, 384(9951): 1376-1388.
RICCI F, BERNASCONI S, PEREGO P, et al. Ovarian carcinoma tumor-initiating cells have a mesenchymal phenotype[J]. Cell Cycle, 2012, 11(10): 1966-1976.
YANG J, ANTIN P, BERX G, et al. Guidelines and definitions for research on epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 341-352.
NIETO M A, HUANG R Y, JACKSON R A, et al. EMT: 2016[J]. Cell, 2016, 166(1): 21-45.
PASTUSHENKO I, BLANPAIN C. EMT Transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226.
LAMOUILLE S, XU J, DERYNCK R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196.
AREND R C, LONDOÑO-JOSHI A I, STRAUGHN J M, et al. The Wnt/β-catenin pathway in ovarian cancer: a review[J]. Gynecol Oncol, 2013, 131(3): 772-779.
LORET N, DENYS H, TUMMERS P, et al. The role of epithelial-to-mesenchymal plasticity in ovarian cancer progression and therapy resistance[J]. Cancers (Basel), 2019, 11(6): 838.
LOH C Y, CHAI J Y, TANG T F, et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges[J]. Cells, 2019, 8(10): 1118.
SÁNCHEZ-TILLÓ E, LÁZARO A, TORRENT R, et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1[J]. Oncogene, 2010, 29(24): 3490-3500.
SU H Y, LAI H C, LIN Y W, et al. Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway[J]. Int J Cancer, 2010, 127(3): 555-567.
ZHANG F, CUI J Y, GAO H F, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer via CXCL12/CXCR4 axis[J]. Future Oncol, 2020, 16(32): 2619-2633.
KWON M, KIM J H, RYBAK Y, et al. Reduced expression of FILIP1L, a novel WNT pathway inhibitor, is associated with poor survival, progression and chemoresistance in ovarian cancer[J]. Oncotarget, 2016, 7(47): 77052-77070.
WANG Y, YANG B, ZHAO J, et al. Epithelial‑mesenchymal transition induced by bone morphogenetic protein 9 hinders cisplatin efficacy in ovarian cancer cells[J]. Mol Med Rep, 2019, 19(3): 1501-1508.
WU X, ZHAO J, RUAN Y, et al. Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer[J]. Cell Death Dis, 2018, 9(11): 1102.
WANG L, ZHANG F, CUI J Y, et al. CAFs enhance paclitaxel resistance by inducing EMT through the IL‑6/JAK2/STAT3 pathway[J]. Oncol Rep, 2018, 39(5): 2081-2090.
ZHAO J, TAN W, ZHANG L, et al. FGFR3 phosphorylates EGFR to promote cisplatin-resistance in ovarian cancer[J]. Biochem Pharmacol, 2021, 190: 114536.
DENG J, BAI X, FENG X, et al. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression[J]. BMC Cancer, 2019, 19(1): 618.
WANG Z, LI F, WEI M, et al. Circadian clock protein period2 suppresses the PI3K/Akt pathway and promotes cisplatin sensitivity in ovarian cancer[J]. Cancer Manag Res, 2020, 12: 11897-11908.
BROZOVIC A. The relationship between platinum drug resistance and epithelial-mesenchymal transition[J]. Arch Toxicol, 2017, 91(2): 605-619.
ZHOU Y, ZHU Y, FAN X, et al. NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells[J]. Oncotarget, 2017, 8(20): 33110-33121.
LATIFI A, ABUBAKER K, CASTRECHINI N, et al. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile[J]. J Cell Biochem, 2011, 112(10): 2850-2864.
HOU L, HOU X, WANG L, et al. PD98059 impairs the cisplatin-resistance of ovarian cancer cells by suppressing ERK pathway and epithelial mesenchymal transition process[J]. Cancer Biomark, 2017, 21(1): 187-194.
AKBARZADEH M, AKBARZADEH S, MAJIDINIA M. Targeting Notch signaling pathway as an effective strategy in overcoming drug resistance in ovarian cancer[J]. Pathol Res Pract, 2020, 216(11): 153158.
GUPTA N, XU Z, EL-SEHEMY A, et al. Notch3 induces epithelial-mesenchymal transition and attenuates carboplatin-induced apoptosis in ovarian cancer cells[J]. Gynecol Oncol, 2013, 130(1): 200-206.
YANG J, XING H, LU D, et al. Role of Jagged1/STAT3 signalling in platinum-resistant ovarian cancer[J]. J Cell Mol Med, 2019, 23(6): 4005-4018.
LIANG F, REN C, WANG J, et al. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy[J]. Oncogenesis, 2019, 8(10): 59.
WANG A C, SU Q B, WU F X, et al. Role of TLR4 for paclitaxel chemotherapy in human epithelial ovarian cancer cells[J]. Eur J Clin Invest, 2009, 39(2): 157-164.
BATES M, SPILLANE C D, GALLAGHER M F, et al. The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer[J]. PLoS One, 2020, 15(12): e0243715.
CROW J, ATAY S, BANSKOTA S, et al. Exosomes as mediators of platinum resistance in ovarian cancer[J]. Oncotarget, 2017, 8(7): 11917-11936.
CAO Y L, ZHUANG T, XING B H, et al. Exosomal DNMT1 mediates cisplatin resistance in ovarian cancer[J]. Cell Biochem Funct, 2017, 35(6): 296-303.
PAN G, LIU Y, SHANG L, et al. EMT-associated microRNAs and their roles in cancer stemness and drug resistance[J]. Cancer Commun (Lond), 2021, 41(3): 199-217.
MOGHBELI M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells[J]. J Ovarian Res, 2021, 14(1): 127.
ZHU X, SHEN H, YIN X, et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin[J]. Oncogene, 2016, 35(3): 323-332.
LI L, XU Q H, DONG Y H, et al. MiR-181a upregulation is associated with epithelial-to-mesenchymal transition (EMT) and multidrug resistance (MDR) of ovarian cancer cells[J]. Eur Rev Med Pharmacol Sci, 2016, 20(10): 2004-2010.
CHEN Y, ZHAO X H, ZHANG D D, et al. MiR-513a-3p inhibits EMT mediated by HOXB7 and promotes sensitivity to cisplatin in ovarian cancer cells[J]. Eur Rev Med Pharmacol Sci, 2020, 24(20): 10391-10402.
YU J L, GAO X. MicroRNA 1301 inhibits cisplatin resistance in human ovarian cancer cells by regulating EMT and autophagy[J]. Eur Rev Med Pharmacol Sci, 2020, 24(4): 1688-1696.
TAN W X, SUN G, SHANGGUAN M Y, et al. Novel role of lncRNA CHRF in cisplatin resistance of ovarian cancer is mediated by miR-10b induced EMT and STAT3 signaling[J]. Sci Rep, 2020, 10(1): 14768.
WU Y, ZHOU Y, HE J, et al. Long non-coding RNA H19 mediates ovarian cancer cell cisplatin-resistance and migration during EMT[J]. Int J Clin Exp Pathol, 2019, 12(7): 2506-2515.
CORTÉS M, SANCHEZ-MORAL L, DE BARRIOS O, et al. Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles[J]. Embo J, 2017, 36(22): 3336-3355.
NAKAMURA K, TERAI Y, TANABE A, et al. CD24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymal transition in ovarian cancer via both the Akt and ERK pathways[J]. Oncol Rep, 2017, 37(6): 3189-3200.
LIU Y K, JIA Y J, LIU S H, et al. Low expression of FXYD5 reverses the cisplatin resistance of epithelial ovarian cancer cells[J]. Histol Histopathol, 2021, 36(5): 535-545.
DENG L, FENG D Q, LING B. Cyclooxygenase-2 promotes ovarian cancer cell migration and cisplatin resistance via regulating epithelial mesenchymal transition[J]. J Zhejiang Univ Sci B, 2020, 21(4): 315-326.
ZHANG J, GUAN W, XU X, et al. A novel homeostatic loop of sorcin drives paclitaxel-resistance and malignant progression via Smad4/ZEB1/miR-142-5p in human ovarian cancer[J]. Oncogene, 2021, 40(30): 4906-4918.
LI C, DING H, TIAN J, et al. Forkhead box protein C2 promotes epithelial-mesenchymal transition, migration and invasion in cisplatin-resistant human ovarian cancer cell line (SKOV3/CDDP)[J]. Cell Physiol Biochem, 2016, 39(3): 1098-1110.
SHI Y, ZHANG J, LIU M, et al. SMAD3 inducing the transcription of STYK1 to promote the EMT process and improve the tolerance of ovarian carcinoma cells to paclitaxel[J]. J Cell Biochem, 2019, 120(6): 10796-10811.
CHONG K Y, KANG M, GAROFALO F, et al. Inhibition of heat shock protein 90 suppresses Twist1 transcription[J]. Mol Pharmacol, 2019, 96(2): 168-179.
BALIGA M S, DSOUZA J J. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer[J]. Eur J Cancer Prev, 2011, 20(3): 225-239.
DE A, DE A, SHARMA R, et al. Sensitization of carboplatinum- and taxol-resistant high-grade serous ovarian cancer cells carrying p53, BRCA1/2 mutations by emblica officinalis (Amla) via multiple targets[J]. J Cancer, 2020, 11(7): 1927-1939.
丰颖.小剂量雷公藤多苷对人上皮性耐药卵巢癌A2780/DDP细胞的抑制作用及机制研究[D]. 南昌:南昌大学, 2021.
ZHANG X, SHEN D, FENG Y, et al. Pharmacological actions, molecular mechanisms, pharmacokinetic progressions, and clinical applications of Hydroxysafflor Yellow A in antidiabetic research[J]. J Immunol Res, 2021, 2021: 4560012.
梁若笳,张佳颖,朱磊,等. 羟基红花黄色素A逆转卵巢癌耐药细胞株A2780/DDP的作用及机制[J]. 浙江临床医学,2019, 21(3): 293-295.
FERRARESI A, ESPOSITO A, GIRONE C, et al. Resveratrol contrasts LPA-induced ovarian cancer cell migration and platinum resistance by rescuing hedgehog-mediated autophagy[J]. Cells, 2021, 10(11): 3213.
SHILNIKOVA K, PIAO M J, KANG K A, et al. Shikonin induces mitochondria-mediated apoptosis and attenuates epithelial-mesenchymal transition in cisplatin-resistant human ovarian cancer cells[J]. Oncol Lett, 2018, 15(4): 5417-5424.
王慧,王思思,李立楠,等. 白藜芦醇对人卵巢癌耐药细胞株SKOV3/DDP耐药逆转的初步研究[J]. 四川医学,2021, 42(7): 664-668.
王慧,王静,闫冬娟,等. 黄腐酚对人卵巢癌耐药细胞株SKOV3/DDP耐药性的影响及其机制[J]. 肿瘤药学,2022, 12(4): 481-487, 408.
赵虎,王彥,敬怀波. 姜黄素对卵巢癌耐药细胞A2780/taxol凋亡诱导作用及其机制探讨[J].中国妇产科临床杂志,2021, 22(1): 54-55.
丁秋花. 小豆蔻明增强紫杉醇抑制卵巢癌耐药细胞的作用及其机制研究[D]. 福州:福建医科大学,2020.
朱虹. 柚皮苷对人卵巢癌耐药细胞SKOV3/DDP的体外逆转作用及其机制[D]. 南昌:南昌大学,2017.
朱四红,谭布珍,胡辉,等. 雷公藤内酯醇通过抑制HIF-1α通路逆转卵巢癌耐药的研究[J]. 实用癌症杂志,2021, 36(11): 1741-1745.
钱俏红,陈瑞芳,李晶,等. 去甲斑蝥素通过调节Hedgehog信号通路对卵巢癌耐药细胞株肿瘤干细胞活性的影响[J]. 中华中医药杂志,2021, 36(5): 2926-2930.
王雅青. 橙皮素通过调节自噬和凋亡逆转卵巢癌顺铂耐药细胞A2780/DDP耐药性及相关机制研究[D]. 福州:福建医科大学,2021.
殷雪琴. 血根碱对顺铂耐药卵巢癌的抑制作用及机理研究[D]. 昆明:昆明医科大学,2020.
郑宁泽,彭富华,樊迪,等. 黄芩素增强细胞缝隙链接的功能进而增加卵巢癌耐药细胞对顺铂的敏感性[J]. 中国药理学与毒理学杂志,2019, 33(10): 905-906.
杨茗钫,程晓华,刘丝荪,等. 熊果酸对人卵巢癌耐药SKOV3/DDP裸鼠移植瘤的抑制作用[J]. 医药导报,2017, 36(1): 28-31.
吴晓晴. 益气活血解毒方治疗铂耐药卵巢癌疗效及对巨噬细胞表型的影响研究[D]. 北京:北京中医药大学,2021.
NOROUZI-BAROUGH L, SAROOKHANI M R, SHARIFI M, et al. Molecular mechanisms of drug resistance in ovarian cancer[J]. J Cell Physiol, 2018, 233(6): 4546-4562.
罗丽萍,彭诗维,朱四红. 姜黄素协同顺铂对卵巢癌耐药细胞株COC1/DDP抑制作用的实验研究[J]. 江西医药,2016,51(11):1165-1167.
宋琪,夏义欣,路泽军,等. 多柔比星脂质体联合复方红豆杉胶囊治疗晚期铂类耐药型卵巢癌的临床效果[J]. 世界中医药,2018, 13(2): 366-369.
王瑛. “滋阴填精方”对人卵巢癌耐药细胞株SKOV3/DDP裸鼠移植瘤的作用及LRP、GST-π表达的影响[D]. 北京:北京中医药大学,2014.
郭晓娟,韩立,杨雷,等. 桂枝茯苓丸联用顺铂紫杉醇化疗提高卵巢癌多药耐药模型裸鼠生存率[J]. 科学技术与工程,2016, 16(20): 120-124.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构