1.上海中医药大学附属曙光医院肝病研究所(上海 201203)
2.杭州市红十字会医院消化肝病科(浙江 杭州 310003)
3.浙江中医药大学附属第二医院肝病、感染性疾病科(浙江 杭州 310005)
4.上海市中医临床重点实验室(上海 201203)
5.上海中医药大学附属曙光医院肝病科(上海 201203)
皮亚妮,女,硕士研究生,主要从事中西医结合防治慢性肝病临床及基础研究工作
陶艳艳,研究员,硕士研究生导师; E-mail:taoyanyan1023@126.com
赵长青,主任医师,硕士研究生导师;E-mail:cathy090909@126.com
扫 描 看 全 文
皮亚妮,王雨露,许笑阳,等.肝糖异方改善肝细胞过氧化损伤致糖代谢异常的体外研究[J].上海中医药杂志,2023,57(5):20-26.
PI Ya’ni,WANG Yulu,XU Xiaoyang,et al.Gantangyi Recipe improving abnormal glucose metabolism of hepatocyte peroxidative damage in vitro[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(5):20-26.
皮亚妮,王雨露,许笑阳,等.肝糖异方改善肝细胞过氧化损伤致糖代谢异常的体外研究[J].上海中医药杂志,2023,57(5):20-26. DOI: 10.16305/j.1007-1334.2023.2209065.
PI Ya’ni,WANG Yulu,XU Xiaoyang,et al.Gantangyi Recipe improving abnormal glucose metabolism of hepatocyte peroxidative damage in vitro[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(5):20-26. DOI: 10.16305/j.1007-1334.2023.2209065.
目的,2,探讨肝糖异方改善氧化应激、通过调控糖原合成信号通路糖原合成激酶-3β(GSK-3β)/ FoxO1转录因子(FoxO1)调节糖代谢的作用机制。,方法,2,肝细胞以500 μmol/L 过氧化氢(H,2,O,2,)孵育30 min后分为模型组、肝糖异方组及二甲双胍组,肝糖异方组及二甲双胍组分别以肝糖异方(200 μg/L)及二甲双胍(5 mmol/L)与肝细胞共孵育48 h,同时设正常组以对照。采用CCK-8法检测细胞活力;酶联免疫吸附试验(ELISA)法检测细胞上清丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)活性及丙二醛(MDA)水平;2',7'-二氯二氢荧光素二乙酸酯(DCFH-DA)荧光探针法检测活性氧(ROS)水平;过碘酸雪夫染色(PAS)法检测肝细胞内糖原含量;葡萄糖氧化酶法检测细胞上清中葡萄糖浓度;Western blot法检测细胞p-GSK-3β/GSK-3β、p-FoxO1/FoxO1蛋白表达。,结果,2,与正常组比较,H,2,O,2,可诱导模型组肝细胞过氧化损伤,且细胞上清中ALT、AST活性及MDA含量明显升高(,P,<,0.05),ROS生成速率明显升高(,P,<,0.05),细胞上清中葡萄糖含量明显升高(,P,<,0.05),糖原染色结果显示糖原阳染颗粒显著减少、细胞着色较浅,p-GSK-3β/GSK-3β及p-FoxO1/FoxO1蛋白表达明显降低(,P<,0.05)。与模型组比较,肝糖异方及二甲双胍干预后,ALT、AST、MDA水平均有不同程度的降低,ROS生成速率均明显降低(,P,<,0.05),且肝糖异方均优于二甲双胍(,P,<,0.05);肝糖异方组细胞着色较模型组加深,细胞上清中葡萄糖含量显著下降(,P,<,0.05),p-GSK-3β/GSK-3β及p-FoxO1/FoxO1蛋白表达升高(,P,<,0.05)。,结论,2,肝糖异方可减轻H,2,O,2,诱导的肝细胞氧化应激损伤致糖代谢异常,其作用机制与激活GSK-3β/FoxO1糖原合成信号通路有关。
Objective,2,To investigate the mechanism of Gantangyi Recipe in ameliorating oxidative stress and regulating (GSK-3β/FoxO1) glycogen synthesis signaling pathway to regulate glucose metabolism.,Methods,2,The hepatocytes were incubated with 500 μmol/L H,2,O,2, for 30 min and then divided into the model group, Gantangyi Recipe group, and metformin group. Gantangyi Recipe group and metformin group were respectively incubated with Gantangyi Recipe (200 μg/L) or metformin (5 mmol/L) for 48 h. The normal group was set up. The cell viability was detected by the CCK-8 method; supernatant glutathione aminotransferase (ALT), glutathione aminotransferase (AST) activity, and malondialdehyde (MDA) content were detected by enzyme-linked immunosorbent assay (ELISA); reactive oxygen species (ROS) levels were detected by DCFH-DA fluorescent probe method; glycogen content was stained by PAS staining method; cell supernatant glucose concentration in hepatocytes was detected by glucose oxidation enzyme method; and cell p-GSK-3β/GSK-3β and p-FoxO1/FoxO1 protein expressions were analyzed by Western blot.,Results,2,Compared with the condition of normal group, H,2,O,2, could induce cell peroxidative damage model, the ALT, AST activity, and MDA content were significantly higher in the model group (,P,<,0.05), ROS generation rate was significantly higher (,P,<,0.05), there was a significant increase in supernatant glucose content (,P,<,0.05), the glycogen staining results showed significant reduction and lighter coloration of cell positive staining granules, and p-GSK-3β/GSK-3β and p-FoxO1/FoxO1 protein expressions were significantly reduced (,P,<,0.05). Compared with the condition of model group, the levels of ALT, AST and MDA were reduced to different degrees after the intervention of Gantangyi Recipe and metformin, the rate of ROS production was significantly reduced (,P,<,0.05), and the effect of Gantangyi Recipe was superior to that of metformin (,P,<,0.05). In the Gantangyi Recipe group, cells stained darker in glycogen staining than those in the model group, the supernatant glucose concentration decreased significantly (,P,<,0.05), and the p-GSK-3β/GSK-3β and p-FoxO1/FoxO1 protein expressions increased (,P,<,0.05).,Conclusion,2,Gantangyi Recipe can alleviate the oxidative stress injury and abnormal glucose metabolism in hepatocytes induced by H,2,O,2,, and the mechanism is related to the activation of the GSK-3β/FoxO1 glycogen synthesis signaling pathway.
肝硬化糖尿病肝糖异方糖代谢异常氧化应激糖原合成中药研究
cirrhosisdiabetes mellitusGantangyi Recipeabnormal glucose metabolismoxidative stressglycogen synthesistraditional Chinese herbal medicine research
STYSKAL J, VAN REMMEN H, RICHARDSON A, et al. Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models?[J]. Free Radic Biol Med, 2012, 52(1): 46-58.
赵长青,顾宏图,成扬,等. 扶正化瘀肝糖综合治疗方案治疗乙型肝炎后肝硬化合并糖代谢异常的临床研究[J]. 中国中西医结合杂志,2008, 28(1): 24-27.
顾宏图,杨亚田,徐虹,等. 肝糖异方及其拆方对CCl4-HF复合模型诱导的肝源性糖尿病大鼠肝纤维化及糖代谢异常的影响[J]. 上海中医药杂志,2020, 54(7): 86-93.
QUAN X, GUO Q, LI X, et al. Malus toringoides (Rehd.) Hughes improves glucose and lipid metabolism and liver injury in high fructose-induced mice[J]. J Food Biochem, 2022, 46(7): e14134.
LI H S. Salidroside and curcumin formula prevents liver injury in nonalcoholic fatty liver disease in rats[J]. Ann Hepatol, 2018, 17(5): 769-778.
LU Y, WU Y, CHEN X, et al. Water extract of shepherd's purse prevents high-fructose induced-liver injury by regulating glucolipid metabolism and gut microbiota[J]. Food Chem, 2021, 342: 128536.
LI S, TAN H Y, WANG N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. Int J Mol Sci, 2015, 16(11): 26087-26124.
徐国银,谈为忠,杨利慧,等. H2O2诱导BRL-3A细胞氧化损伤的研究[J]. 中国畜牧兽医文摘,2018, 34(4): 75-77.
程靖. 二甲双胍对非酒精性脂肪肝细胞模型脂质沉积、PGC-1α表达和氧化应激水平的影响[D]. 合肥:安徽医科大学,2014.
吴俊. 肝源性糖尿病130例临床分析[J]. 中西医结合肝病杂志,2012, 22(6): 374-375.
GARCIA-COMPEAN D, JAQUEZ-QUINTANA J O, MALDONADO-GARZA H. Hepatogenous diabetes. Current views of an ancient problem[J]. Ann Hepatol, 2009, 8(1): 13-20.
赵长青,顾宏图,邢枫,等. 肝硬化合并糖代谢异常的中医证候特点研究[J]. 上海中医药大学学报,2007, 21(5): 38-40.
ZHOU R, MA Y, QIU S, et al. Metformin promotes cell proliferation and osteogenesis under high glucose condition by regulating the ROS-AKT-mTOR axis[J]. Mol Med Rep, 2020, 22(4): 3387-3395.
FAN K, WU K, LIN L, et al. Metformin mitigates carbon tetrachloride-induced TGF-β1/Smad3 signaling and liver fibrosis in mice[J]. Biomed Pharmacother, 2017, 90: 421-426.
EZHILARASAN D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective[J]. Arab J Gastroenterol, 2018, 19(2): 56-64.
SHI C, CHEN X, LIU Z, et al. Oleuropein protects L-02 cells against H2O2-induced oxidative stress by increasing SOD1, GPx1 and CAT expression[J]. Biomed Pharmacother, 2017, 85(1): 740-748.
WAN M, LEAVENS K F, HUNTER R W, et al. A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition[J]. Cell Metab, 2013, 18(1): 99-105.
PEARCE N J, ARCH J R, CLAPHAM J C, et al. Development of glucose intolerance in male transgenic mice overexpressing human glycogen synthase kinase-3beta on a muscle-specific promoter[J]. Metabolism, 2004, 53(10): 1322-1330.
FERRER I, BARRACHINA M, TOLNAY M, et al. Phosphorylated protein kinases associated with neuronal and glial tau deposits in argyrophilic grain disease[J]. Brain Pathol, 2003, 13(1): 62-78.
ARAB H H, SAFAR M M, SHAHIN N N. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson’s disease rat model[J]. ACS Chem Neurosci, 2021, 12(4): 689-703.
JIN F J, WU Z Z, HU X, et al. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility[J]. Cancer Biol Med, 2019, 16(1): 38-54.
KODAMA S, MOORE R, YAMAMOTO Y, et al.Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene[J]. Biochem J, 2007, 407(3): 373-381.
MATSUZAKI H, DAITOKU H, HATTA M, et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation[J]. Proc Natl Acad Sci U S A, 2003, 100(20): 11285-11290.
FRESCAS D, VALENTI L, ACCILI D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes[J]. J Biol Chem, 2005, 280(21): 20589-20595.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构