1.上海中医药大学(上海 201203)
2.上海健康医学院(上海 201318)
张梦瑶,女,硕士研究生,主要从事中药联合靶向单克隆抗体抗肿瘤研究工作
李博华,研究员,博士研究生导师; E-mail:bohuali1020@163.com
扫 描 看 全 文
张梦瑶,雷碧黠,解伟,等.中药单体抗乳腺癌作用机制进展[J].上海中医药杂志,2023,57(6):26-40.
ZHANG Mengyao,LEI Bixia,XIE Wei,et al.Research progress on mechanism of anti⁃breast cancer action of Chinese herbal monomers[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(6):26-40.
张梦瑶,雷碧黠,解伟,等.中药单体抗乳腺癌作用机制进展[J].上海中医药杂志,2023,57(6):26-40. DOI: 10.16305/j.1007-1334.2023.2208015.
ZHANG Mengyao,LEI Bixia,XIE Wei,et al.Research progress on mechanism of anti⁃breast cancer action of Chinese herbal monomers[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(6):26-40. DOI: 10.16305/j.1007-1334.2023.2208015.
乳腺癌是女性常见的恶性肿瘤,中药对其有较好的治疗作用。通过梳理相关文献,从化合物属性(黄酮类、萜类、生物碱类、其他)角度归纳整理中药单体抗乳腺癌的作用机制,以期为中医药治疗乳腺癌的研究工作及新药的研发提供参考。中药单体抗乳腺癌的主要机制涉及细胞毒性的直接杀伤作用,调节肿瘤免疫微环境,增强靶向药物治疗敏感性及辅助放射治疗、化学疗法等方面。部分中药单体的生物毒性、成药性等问题亟待解决,具有开发潜力的中药单体作用机制、衍生物开发、药代动力学、给药方式、用药安全性等研究数据亦有待补充。
Breast cancer is a common malignant tumor in women, and the therapeutic effects of traditional Chinese herbal medicines (TCHMs) are satisfactory. By reviewing relevant literature, we summarized the mechanism of action of Chinese herbal monomers against breast cancer in terms of compound properties (flavonoids, terpenoids, alkaloids and others), with the aim of providing a reference for the research on traditional Chinese medicine for breast cancer treatment and the development of new drugs. The main mechanisms of Chinese herbal monomers against breast cancer mainly involve direct cytotoxicity, regulation of the tumor immune microenvironment, increasing sensitivity to targeted drug therapy, and suppor radiotherapy and chemotherapy. Some issues, such as the biological toxicity and developability of certain Chinese herbal monomers, need to be addressed. Research data on the mechanisms of action, development of derivatives, pharmacokinetics, administration methods, and drug safety of Chinese herbal monomers with development potential also need to be supplemented.
乳腺癌中药单体中医药疗法黄酮生物碱多糖抗肿瘤
breast cancerChinese herbal monomertraditional Chinese medicine therapyflavonoidsalkaloidspolysaccharidesantitumor
WAKS A G, WINER E P. Breast cancer treatment: a review[J]. JAMA, 2019, 321(3): 288-300.
NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. J Nat Prod, 2020, 83(3): 770-803.
CHIEN S, WU Y, CHUNG J, et al. Quercetin-induced apoptosis acts through mitochondrial-and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells[J]. Hum Exp Toxicol, 2009, 28(8): 493-503.
SCAMBIA G, RANELLETTI F O, PANICI P B, et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target[J]. Cancer Chemother Pharmacol, 1994, 34(6): 459-464.
WAY T, KAO M, LIN J. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway[J]. J Biol Chem, 2004, 279(6): 4479-4489.
BIMONTE S, CASCELLA M, BARBIERI A, et al. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: an update of the current state of knowledge[J]. Infect Agent Cancer, 2020, 15(1): 1-6.
AHMED S, KHAN H, FRATANTONIO D, et al. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives[J]. Phytomedicine, 2019, 59: 152883.
CIOLINO H P, DASCHNER P J, YEH G C. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially[J]. Biochem J, 1999, 340(3): 715-722.
CIOLINO H P, YEH G C. The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor[J]. Br J Cancer, 1999, 79(9): 1340-1346.
CHEN J, ZHANG X, WANG Y, et al. Differential ability of formononetin to stimulate proliferation of endothelial cells and breast cancer cells via a feedback loop involving MicroRNA‐375, RASD1, and ERα[J]. Mol Carcinog, 2018, 57(7): 817-830.
PHI L T H, SARI I N, YANG Y, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment[J]. Stem Cells Int, 2018, 2018: 5416923.
KOH S Y, MOON J Y, UNNO T, et al. Baicalein suppresses stem cell-like characteristics in radio-and chemoresistant MDA-MB-231 human breast cancer cells through up-regulation of IFIT2[J]. Nutrients, 2019, 11(3): 624.
JIA D, TAN Y, LIU H, et al. Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo[J]. Oncotarget, 2016, 7(1): 771-785.
CHOI J, KIM J, LEE J, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin[J]. Int J Oncol, 2001, 19(4): 837-844.
LONG X, FAN M, BIGSBY R M, et al. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-α-dependent and estrogen receptor-α-independent mechanisms[J]. Mol Cancer Ther, 2008, 7(7): 2096-2108.
MOON Y J, SHIN B S, AN G, et al. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model[J]. Pharm Res, 2008, 25(9): 2158-2163.
SEHDEV V, LAI J C, BHUSHAN A. Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in HER-2-positive breast cancer cells[J]. J Oncol, 2009, 2009: 121458.
YANG B, HUANG J, XIANG T, et al. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway[J]. J Appl Toxicol, 2014, 34(1): 105-112.
EDDY S F, KANE S E, SONENSHEIN G E. Trastuzumab-resistant HER2-driven breast cancer cells are sensitive to epigallocatechin-3 gallate[J]. Cancer Res, 2007, 67(19): 9018-9023.
BAKER K M, BAUER A C. Green tea catechin, EGCG, suppresses PCB 102-induced proliferation in estrogen-sensitive breast cancer cells[J]. Int J Breast Cancer, 2015, 2015: 163591.
YANG P, TSENG H, PENG C, et al. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy[J]. Int J Oncol, 2012, 40(2): 469-478.
SUN X, MA X, LI Q, et al. Anti-cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: In vitro and in vivo studies[J]. Int J Mol Med, 2018, 42(2): 811-820.
IMRAN M, SAEED F, GILANI S A, et al. Fisetin: An anticancer perspective[J]. Food Sci Nutr, 2021, 9(1): 3-16.
CHOI E J. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21[J].Nutr Cancer, 2007, 59(1): 115-119.
CHANDRIKA B B, STEEPHAN M, KUMAR T S, et al. Hesperetin and naringenin sensitize HER2 positive cancer cells to death by serving as HER2 tyrosine kinase inhibitors[J]. Life Sci, 2016, 160: 47-56.
PALIT S, KAR S, SHARMA G, et al. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway[J]. J Cell Physiol, 2015, 230(8): 1729-1739.
ZHU L, XUE L. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells[J]. Oncol Res, 2019, 27(6): 629-634.
KIM S, HWANG K, CHOI K. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models[J]. J Nutr Biochem, 2016, 28: 70-82.
陈函,胡志强,马康,等. 木犀草素协同顺铂调控Nrf2-ARE信号抗三阴性乳腺癌作用研究[J]. 社区医学杂志,2021, 19(17): 1043-1050.
YANG M, WANG C, CHEN N, et al. Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3[J]. Chem Biol Interact, 2014, 213: 60-68.
SUN D, ZHANG H, MAO L, et al. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing notch signaling and regulating MiRNAs[J]. Cell Physiol Biochem, 2015, 37(5): 1693-1711.
PARK S, HAM S, KWON T H, et al. Luteolin induces cell cycle arrest and apoptosis through extrinsic and intrinsic signaling pathways in MCF-7 breast cancer cells[J]. J Environ Pathol Toxicol Oncol, 2014, 33(3): 219-231.
JIN H, LEE W S, EUN S Y, et al. Morin, a flavonoid from Moraceae, suppresses growth and invasion of the highly metastatic breast cancer cell line MDA-MB-231 partly through suppression of the Akt pathway[J]. Int J Oncol, 2014, 45(4): 1629-1637.
MAHARJAN S, KWON Y, LEE M, et al. Cell cycle arrest-mediated cell death by morin in MDA-MB-231 triple-negative breast cancer cells[J]. Pharmacol Rep, 2021, 73(5): 1315-1327.
CI Y, ZHANG Y, LIU Y, et al. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP) -2/9[J]. Phytother Res, 2018, 32(7): 1373-1381.
KNICKLE A, FERNANDO W, GREENSHIELDS A L, et al. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide[J]. Food Chem Toxicol, 2018, 118: 154-167.
HARMON A W, PATEL Y M. Naringenin inhibits glucose uptake in MCF-7 breast cancer cells: a mechanism for impaired cellular proliferation[J]. Breast Cancer Res Treat, 2004, 85(2): 103-110.
ZHANG F, DONG W, ZENG W, et al. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation[J]. Breast Cancer Res, 2016, 18(1): 1-16.
LI H, YANG B, HUANG J, et al. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway[J]. Toxicol Lett, 2013, 220(3): 219-228.
WU K, HO C, CHEN Z, et al. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter[J]. J Food Drug Anal, 2018, 26(1): 221-231.
KIM M S, KWON J Y, KANG N J, et al. Phloretin induces apoptosis in H‐Ras MCF10A human breast tumor cells through the activation of p53 via JNK and p38 mitogen‐activated protein kinase signaling[J]. Ann N Y Acad Sci, 2009, 1171(1): 479-483.
ZI X, FEYES D K, AGARWAL R. Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins[J]. Clin Cancer Res, 1998, 4(4): 1055-1064.
KIM S, CHOO G, YOO E, et al. Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis[J]. Oncol Lett, 2021, 21(6): 1-10.
HUANG W, SU H, FANG L, et al. Licochalcone A inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer[J]. Cells, 2019, 8(3): 218.
KANG T H, SEO J H, OH H, et al. Licochalcone A suppresses specificity protein 1 as a novel target in human breast cancer cells[J]. J Cell Biochem, 2017, 118(12): 4652-4663.
XUE L, ZHANG W J, FAN Q X, et al. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells[J]. Oncol Lett, 2018, 15(2): 1869-1873.
YOSHIMARU T, KOMATSU M, TASHIRO E, et al. Xanthohumol suppresses oestrogen-signalling in breast cancer through the inhibition of BIG3-PHB2 interactions[J]. Sci Rep, 2014, 4(1): 1-9.
MONTEIRO R, CALHAU C, SILVA A O E, et al. Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts[J]. J Cell Biochem, 2008, 104(5): 1699-1707.
ZHANG W, PAN Y, GOU P, et al. Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model[J]. Oncol Rep, 2018, 39(1): 280-288.
SUN Z, ZHOU C, LIU F, et al. Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro[J]. Oncol Lett, 2018, 15(1): 908-916.
KANG Y, PARK M, HEO S, et al. The radio-sensitizing effect of xanthohumol is mediated by STAT3 and EGFR suppression in doxorubicin-resistant MCF-7 human breast cancer cells[J]. Biochim Biophys Acta, 2013, 1830(3): 2638-2648.
HU S, HUANG L, MENG L, et al. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen β-activated protein kinase kinase signaling pathways[J]. Mol Med Rep, 2015, 12(5): 6745-6751.
LI C, YANG D, ZHAO Y, et al. Inhibitory effects of isorhamnetin on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-2/9[J]. Nutr Cancer, 2015, 67(7): 1191-1200.
LIU D, YOU P, LUO Y, et al. Galangin induces apoptosis in MCF-7 human breast cancer cells through mitochondrial pathway and phosphatidylinositol 3-kinase/Akt inhibition[J]. Pharmacology, 2018, 102(1-2): 58-66.
LI X, XU J, TANG X, et al. Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo[J]. Mol Med Rep, 2016, 13(5): 4007-4013.
CHEN X, ZHOU J, LUO L, et al. Black rice anthocyanins suppress metastasis of breast cancer cells by targeting RAS/RAF/MAPK pathway[J]. Biomed Res Int, 2015, 2015: 414250.
EL-SHEIKH M M, ABDEL-NABY D H, EL-HAMOLY T. Polyphenols, luteolin and Pelargonidin, modulate radio-and chemo-sensitivity on breast cancer[J]. Egy J Rad Sci Appl, 2021, 34(1): 69-78.
CHEN J, ZENG J, XIN M, et al. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo[J]. Horm Metab Res, 2011, 43(10): 681-686.
ZHOU R, XU L, YE M, et al. Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways[J]. Horm Metab Res, 2014, 46(11): 753-760.
XIN M, WANG Y, REN Q, et al. Formononetin and metformin act synergistically to inhibit growth of MCF-7 breast cancer cells in vitro[J]. Biomed Pharmacother, 2019, 109: 2084-2089.
ZENG L, YUAN S, SHEN J, et al. Suppression of human breast cancer cells by tectorigenin through downregulation of matrix metalloproteinases and MAPK signaling in vitro[J]. Mol Med Rep, 2018, 17(3): 3935-3943.
HUANG W, GU P, FANG L, et al. Sophoraflavanone G from Sophora flavescens induces apoptosis in triple-negative breast cancer cells[J]. Phytomedicine, 2019, 61: 152852.
CHENG W, LIU D, GUO M, et al. Sophoraflavanone G suppresses the progression of triple‐negative breast cancer via the inactivation of EGFR-PI3K-AKT signaling[J]. Drug Dev Res, 2022, 83(5): 1138-1151.
HE J, DU L, BAO M, et al. Oroxin A inhibits breast cancer cell growth by inducing robust endoplasmic reticulum stress and senescence[J]. Anticancer Drugs, 2016, 27(3): 204-215.
WANG L, LING Y, CHEN Y, et al. Flavonoid baicalein suppresses adhesion, migration and invasion of MDA-MB-231 human breast cancer cells[J]. Cancer Lett, 2010, 297(1): 42-48.
YAN W, MA X, ZHAO X, et al. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro[J]. Drug Des Devel Ther, 2018, 12: 3961-3972.
MA X, YAN W, DAI Z, et al. Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway[J]. Drug Des Devel Ther, 2016, 10: 1419-1441.
MURILLO G, PENG X, TORRES K E, et al. Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the wnt signaling pathwaydeguelin actions in MDA-MB-231 cells[J]. Cancer Prev Res (Phila), 2009, 2(11): 942-950.
PENG X, KARNA P, O'REGAN R M, et al. Down-regulation of inhibitor of apoptosis proteins by deguelin selectively induces apoptosis in breast cancer cells[J]. Mol Pharmacol, 2007, 71(1): 101-111.
MEHTA R, KATTA H, ALIMIRAH F, et al. Deguelin action involves c-Met and EGFR signaling pathways in triple negative breast cancer cells[J]. PLoS One, 2013, 8(6): e65113.
SUH Y, KIM J, SUNG M A, et al. A novel antitumor activity of deguelin targeting the insulin-like growth factor (IGF) receptor pathway via up-regulation of IGF-binding protein-3 expression in breast cancer[J]. Cancer Lett, 2013, 332(1): 102-109.
JIN J, QIU S, WANG P, et al. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming[J]. J Exp Clin Cancer Res, 2019, 38(1): 1-16.
KONG W, LI C, QI Q, et al. Cardamonin induces G2/M arrest and apoptosis via activation of the JNK-FOXO3a pathway in breast cancer cells[J]. Cell Biol Int, 2020, 44(1): 177-188.
PETERSON G, BARNES S. Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells[J]. Cell Growth Differ, 1996, 7(10): 1345-1351.
CAPPELLETTI V, FIORAVANTI L, MIODINI P, et al. Genistein blocks breast cancer cells in the G(2)M phase of the cell cycle[J]. J Cell Biochem, 2000, 79(4): 594-600.
GONG L, LI Y, NEDELJKOVIC-KUREPA A, et al. Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells[J]. Oncogene, 2003, 22(30): 4702-4709.
张建红,刘琬菁,罗红梅. 药用植物萜类化合物活性研究进展[J]. 世界科学技术-中医药现代化,2018, 20(3): 419-430.
奚蕾,沈伟生,曹向明,等. 冬凌草联合新辅助化疗对乳腺癌患者血清CA199、CEA、CA15-3水平及T细胞亚群的影响[J]. 海南医学院学报,2017, 23(14): 1972-1975.
IKEZOE T, CHEN S S, TONG X, et al. Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells[J]. Int J Oncol, 2003, 23(4): 1187-1193.
WANG S, ZHONG Z, WAN J, et al. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells[J]. Am J Chin Med, 2013, 41(1): 177-196.
胡高波,邱惠萍,金湛,等. 冬凌草甲素对乳腺癌MCF-7细胞氟维司群耐药的逆转作用及机制[J]. 中国药理学与毒理学杂志,2021, 35(11): 809-815.
LAI H, SINGH N P. Oral artemisinin prevents and delays the development of 7, 12-dimethylbenz[a] anthracene (DMBA)-induced breast cancer in the rat[J]. Cancer Lett, 2006, 231(1): 43-48.
KUMARI K, KESHARI S, SENGUPTA D, et al. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment[J]. BMC Cancer, 2017, 17(1): 1-13.
MERTENS TALCOTT S U, NORATTO G D, LI X, et al. Betulinic acid decreases ER‐negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA‐27a: ZBTB10[J]. Mol Carcinog, 2013, 52(8): 591-602.
CAI Y, ZHENG Y, GU J, et al. Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78[J]. Cell Death Dis, 2018, 9(6): 1-16.
ZENG A, YU Y, YAO Y, et al. Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models[J]. Oncotarget, 2017, 9(3): 3794-3804.
JIAO L, WANG S, ZHENG Y, et al. Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway[J]. Biochem Pharmacol, 2019, 161: 149-162.
RÍOS J L, MÁÑEZ S. New pharmacological opportunities for betulinic acid[J]. Planta Med, 2018, 84(1): 8-19.
罗金丽,卫若楠,于同月,等. 雷公藤的临床应用及其用量探究[J]. 长春中医药大学学报,2022, 38(5): 491-494.
LIU J, JIANG Z, XIAO J, et al. Effects of triptolide from Tripterygium wilfordii on ERα and p53 expression in two human breast cancer cell lines[J]. Phytomedicine, 2009, 16(11): 1006-1013.
XIONG J, SU T, QU Z, et al. Triptolide has anticancer and chemosensitization effects by down-regulating Akt activation through the MDM2/REST pathway in human breast cancer[J]. Oncotarget, 2016, 7(17): 23933-23946.
SAPIO L, GALLO M, ILLIANO M, et al. The natural cAMP elevating compound forskolin in cancer therapy: is it time?[J]. J Cell Physiol, 2017, 232(5): 922-927.
ILLIANO M, SAPIO L, SALZILLO A, et al. Forskolin improves sensitivity to doxorubicin of triple negative breast cancer cells via Protein Kinase A-mediated ERK1/2 inhibition[J]. Biochem Pharmacol, 2018, 152: 104-113.
ZHANG Q, YUAN Y, CUI J, et al. Paeoniflorin inhibits proliferation and invasion of breast cancer cells through suppressing Notch-1 signaling pathway[J]. Biomed Pharmacother, 2016, 78: 197-203.
WANG Y, WANG Q, LI X, et al. Paeoniflorin sensitizes breast cancer cells to tamoxifen by downregulating microRNA-15b via the FOXO1/CCND1/β-catenin Axis[J]. Drug Des Devel Ther, 2021, 15: 245-257.
ZHOU Z, WANG S, SONG C, et al. Paeoniflorin prevents hypoxia-induced epithelial-mesenchymal transition in human breast cancer cells[J]. Onco Targets Ther, 2016, 9: 2511.
CAO Y, FENG Y, GAO L, et al. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo[J]. Int Immunopharmacol, 2019, 70: 110-116.
SUNDAR S N, MARCONETT C N, DOAN V B, et al. Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells[J]. Carcinogenesis, 2008, 29(12): 2252-2258.
GONG Y, GALLIS B M, GOODLETT D R, et al. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines[J]. Anticancer Res, 2013, 33(1): 123-132.
ZENG C, FAN D, XU Y, et al. Curcumol enhances the sensitivity of doxorubicin in triple-negative breast cancer via regulating the miR-181b-2-3p-ABCC3 axis[J]. Biochem Pharmacol, 2020, 174: 113795.
NING L, MA H, JIANG Z, et al. Curcumol suppresses breast cancer cell metastasis by inhibiting MMP-9 via JNK1/2 and Akt-dependent NF-κB signaling pathways[J]. Integr Cancer Ther, 2016, 15(2): 216-225.
HUANG L, LI A, LIAO G, et al. Curcumol triggers apoptosis of p53 mutant triple-negative human breast cancer MDA-MB 231 cells via activation of p73 and PUMA[J]. Oncol Lett, 2017, 14(1): 1080-1088.
QI H, NING L, YU Z, et al. Proteomic identification of eEF1A1 as a molecular target of curcumol for suppressing metastasis of MDA-MB-231 cells[J]. J Agric Food Chem, 2017, 65(14): 3074-3082.
CUI Q, TASHIRO S, ONODERA S, et al. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells[J]. Biol Pharm Bull, 2007, 30(5): 859-864.
XIA S, ZHANG X, LI C, et al. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling[J]. Saudi Pharm J, 2017, 25(4): 638-643.
LI C, WANG Q, SHEN S, et al. Oridonin inhibits VEGF-A-associated angiogenesis and epithelial-mesenchymal transition of breast cancer in vitro and in vivo[J]. Oncol Lett, 2018, 16(2): 2289-2298.
LI M, JIANG X, GU Z, et al. Glaucocalyxin A activates FasL and induces apoptosis through activation of the JNK pathway in human breast cancer cells[J]. Asian Pac J Cancer Prev, 2013, 14(10): 5805-5810.
鲍刚,吴沁航,高芙蓉,等. 蓝萼甲素对三阴性乳腺癌MDA-MB-231细胞增殖及细胞周期的影响[J]. 中草药,2019, 50(6): 1419-1423.
吴沁航,鲍刚,朱丽文,等. 蓝萼甲素通过PI3K/Akt信号通路诱导三阴性乳腺癌MDA-MB-231细胞凋亡[J]. 中国药理学通报,2020, 36(9): 1227-1232.
SHAO H, MA J, GUO T, et al. Triptolide induces apoptosis of breast cancer cells via a mechanism associated with the Wnt/β- catenin signaling pathway[J]. Exp Ther Med, 2014, 8(2): 505-508.
LI J, LIU R, YANG Y, et al. Triptolide-induced in vitro and in vivo cytotoxicity in human breast cancer stem cells and primary breast cancer cells[J]. Oncol Rep, 2014, 31(5): 2181-2186.
JIANG W, CHEN M J, XIAO C C, et al. Triptolide suppresses growth of breast cancer by targeting HMGB1 in vitro and in vivo[J]. Biol Pharm Bull, 2019, 42(6): 892-899.
GAO H, ZHANG Y, DONG L, et al. Triptolide induces autophagy and apoptosis through ERK activation in human breast cancer MCF-7 cells[J]. Exp Ther Med, 2018, 15(4): 3413-3419.
HARJOTARUNO S, WIDYAWARUYANTI A, SISMINDARI S, et al. Apoptosis inducing effect of andrographolide on TF-47 human breast cancer cell line[J]. Afr J Tradit Complement Altern Med, 2007, 4(3): 345-351.
PENG Y, WANG Y, TANG N, et al. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway[J]. J Exp Clin Cancer Res, 2018, 37(1): 1-14.
LI J, ZHANG C, JIANG H, et al. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth[J]. Onco Targets Ther, 2015, 8: 427-435.
ZHOU X, YUE G G, CHAN A M, et al. Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer[J]. Biochem Pharmacol, 2017, 142: 58-70.
ZHOU X, YUE G G, LIU M, et al. Eriocalyxin B, a natural diterpenoid, inhibited VEGF-induced angiogenesis and diminished angiogenesis-dependent breast tumor growth by suppressing VEGFR-2 signaling[J]. Oncotarget, 2016, 7(50): 82820.
RIAZ A, RASUL A, HUSSAIN G, et al. Eriocalyxin B induces apoptosis in human triple negative breast cancer cells via inhibiting STAT3 activation and mitochondrial dysfunction[J]. Pak J Pharm Sci, 2019, 32(6): 2843-2848.
AL DHAHERI Y, ATTOUB S, RAMADAN G, et al. Carnosol induces ROS-mediated beclin1-independent autophagy and apoptosis in triple negative breast cancer[J]. PLoS One, 2014, 9(10): e109630.
ALSAMRI H, EL HASASNA H, AL DHAHERI Y, et al. Carnosol, a natural polyphenol, inhibits migration, metastasis, and tumor growth of breast cancer via a ROS-dependent proteasome degradation of STAT3[J]. Front Oncol, 2019, 9: 743.
EINBOND L S, WU H, KASHIWAZAKI R, et al. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with curcumin[J]. Fitoterapia, 2012, 83(7): 1160-1168.
HAN N, ZHOU Q, HUANG Q, et al. Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo[J]. Biomed Pharmacother, 2017, 89: 827-837.
D’ALESIO C, BELLESE G, GAGLIANI M C, et al. Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells[J]. J Exp Clin Cancer Res, 2017, 36(1): 1-16.
CHENG L, SHI L, WU J, et al. A hederagenin saponin isolated from Clematis ganpiniana induces apoptosis in breast cancer cells via the mitochondrial pathway[J]. Oncol Lett, 2018, 15(2): 1737-1743.
WANG Y, ZHAO L, HAN X, et al. Saikosaponin A inhibits triple-negative breast cancer growth and metastasis through downregulation of CXCR4[J]. Front Oncol, 2020, 9: 1487.
ZHAO X, LIU J, GE S, et al. Saikosaponin A inhibits breast cancer by regulating Th1/Th2 balance[J]. Front Pharmacol, 2019, 10: 624.
MA Q, GAO F F, HE X, et al. Antitumor effects of saikosaponin b2 on breast cancer cell proliferation and migration[J]. Mol Med Rep, 2019, 20(2): 1943-1951.
WANG J, QI H, ZHANG X, et al. Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling[J]. Biomed Pharmacother, 2018, 108: 724-733.
LI C, GUAN X, XUE H, et al. Reversal of P-glycoprotein-mediated multidrug resistance is induced by saikosaponin D in breast cancer MCF-7/adriamycin cells[J]. Pathol Res Pract, 2017, 213(7): 848-853.
OH M, CHOI Y H, CHOI S, et al. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells[J]. Int J Oncol, 1999, 14(5): 869-944.
LEE H, LEE S, JEONG D, et al. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells[J]. J Ginseng Res, 2018, 42(4): 455-462.
NAKHJAVANI M, HARDINGHAM J E, PALETHORPE H M, et al. Ginsenoside Rg3: Potential molecular targets and therapeutic indication in metastatic breast cancer[J]. Medicines(Basel), 2019, 6(1): 17.
DE ANGEL R E, SMITH S M, GLICKMAN R D, et al. Antitumor effects of ursolic acid in a mouse model of postmenopausal breast cancer[J]. Nutr Cancer, 2010, 62(8): 1074-1086.
WANG J, REN T, XI T. Ursolic acid induces apoptosis by suppressing the expression of FoxM1 in MCF-7 human breast cancer cells[J]. Med Oncol, 2012, 29(1): 10-15.
KASSI E, SOURLINGAS T G, SPILIOTAKI M, et al. Ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells[J]. Cancer Invest, 2009, 27(7): 723-733.
ZHANG X, LI T, GONG E S, et al. Antiproliferative activity of ursolic acid in MDA-MB-231 human breast cancer cells through Nrf2 pathway regulation[J]. J Agric Food Chem, 2020, 68(28): 7404-7415.
PITCHAI D, ROY A, IGNATIUS C. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line[J]. J Adv Pharm Technol Res, 2014, 5(4): 179.
MALEKINEJAD F, KHERADMAND F, KHADEM-ANSARI M H, et al. Lupeol synergizes with doxorubicin to induce anti-proliferative and apoptotic effects on breast cancer cells[J]. Daru, 2022, 30(1): 103-115.
LAMBERTINI E, LAMPRONTI I, PENOLAZZI L, et al. Expression of estrogen receptor α gene in breast cancer cells treated with transcription factor decoy is modulated by Bangladeshi natural plant extracts[J]. Oncol Res, 2005, 15(2): 69-79.
KIM Y, KANG H, JANG S, et al. Celastrol inhibits breast cancer cell invasion via suppression of NF-κB-mediated matrix metallopro-teinase-9 expression[J]. Cell Physiol Biochem, 2011, 28(2): 175.
SHRIVASTAVA S, JEENGAR M K, REDDY V S, et al. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways[J]. Exp Mol Pathol, 2015, 98(3): 313-327.
RAJA S M, CLUBB R J, ORTEGA-CAVA C, et al. Anticancer activity of Celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers[J]. Cancer Biol Ther, 2011, 11(2): 263-276.
YOU D, JEONG Y, YOON S Y, et al. Celastrol attenuates the inflammatory response by inhibiting IL-1β expression in triple-negative breast cancer cells[J]. Oncol Rep, 2021, 45(6): 1-9.
LOU C, XU X, CHEN Y, et al. Alisol A suppresses proliferation, migration, and invasion in human breast cancer MDA-MB-231 cells[J]. Molecules, 2019, 24(20): 3651.
ZHANG A, SHENG Y, ZOU M. Antiproliferative activity of Alisol B in MDA-MB-231 cells is mediated by apoptosis, dysregulation of mitochondrial functions, cell cycle arrest and generation of reactive oxygen species[J]. Biomed Pharmacother, 2017, 87: 110-117.
KING BATOON A, LESZCZYNSKA J M, KLEIN C B. Modulation of gene methylation by genistein or lycopene in breast cancer cells[J]. Environ Mol Mutagen, 2008, 49(1): 36-45.
TAKESHIMA M, ONO M, HIGUCHI T, et al. Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines[J]. Cancer Sci, 2014, 105(3): 252-257.
KABOLI P J, RAHMAT A, ISMAIL P, et al. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer[J]. Eur J Pharmacol, 2014, 740: 584-595.
PAN Y, ZHANG F, ZHAO Y, et al. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer[J]. J Cancer, 2017, 8(9): 1679-1689.
GUO Y, PEI X. Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling[J]. Evid Based Complement Alternat Med, 2019, 2019: 7517431.
WANG C, YANG J, GUO Y, et al. Anticancer activity of tetrandrine by inducing apoptosis in human breast cancer cell line MDA-MB-231 in vivo[J]. Evid Based Complement Alternat Med, 2020, 2020: 6823520.
YUAN B, YAO M, WANG X, et al. Antitumor activity of arsenite in combination with tetrandrine against human breast cancer cell line MDA-MB-231 in vitro and in vivo[J]. Cancer Cell Int, 2018, 18(1): 1-14.
YAO M, YUAN B, WANG X, et al. Synergistic cytotoxic effects of arsenite and tetrandrine in human breast cancer cell line MCF-7[J]. Int J Oncol, 2017, 51(2): 587-598.
LIU W, ZHANG J, YING C, et al. Tetrandrine combined with gemcitabine and Cisplatin for patients with advanced non-small cell lung cancer improve efficacy[J]. Int J Biomed Sci, 2012, 8(1): 28-35.
BHARADWAJ U, ECKOLS T K, KOLOSOV M, et al. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer[J]. Oncogene, 2015, 34(11): 1341-1353.
SHRIVASTAVA S, KULKARNI P, THUMMURI D, et al. Piperlongumine, an alkaloid causes inhibition of PI3K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells[J]. Apoptosis, 2014, 19(7): 1148-1164.
JIN H, LEE Y, PARK J, et al. Piperlongumine induces cell death through ROS-mediated CHOP activation and potentiates TRAIL-induced cell death in breast cancer cells[J]. J Cancer Res Clin Oncol, 2014, 140(12): 2039-2046.
JEONG C H, RYU H, KIM D H, et al. Piperlongumine induces cell cycle arrest via reactive oxygen species accumulation and IKKβ suppression in human breast cancer cells[J]. Antioxidants (Basel), 2019, 8(11): 553.
JIN H, PARK J, KIM H, et al. Piperlongumine downregulates the expression of HER family in breast cancer cells[J]. Biochem Biophys Res Commun, 2017, 486(4): 1083-1089.
PATIL J B, KIM J, JAYAPRAKASHA G K. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway[J]. Eur J Pharmacol, 2010, 645(1-3): 70-78.
KUO H, CHUANG T, TSAI S, et al. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via Akt pathway modulation[J]. J Agric Food Chem, 2012, 60(38): 9649-9658.
KUO H, CHUANG T, YEH M, et al. Growth suppression of HER2-overexpressing breast cancer cells by berberine via modulation of the HER2/PI3K/Akt signaling pathway[J]. J Agric Food Chem, 2011, 59(15): 8216-8224.
ZHANG R, QIAO H, CHEN S, et al. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS[J]. Cancer Biol Ther, 2016, 17(9): 925-934.
PAN J, SHANG J, JIANG G, et al. Ligustrazine induces apoptosis of breast cancer cells in vitro and in vivo[J]. J Cancer Res Ther, 2015, 11(2): 454-458.
LIU Y, YAN Z, XIA Y, et al. Ligustrazine reverts anthracycline chemotherapy resistance of human breast cancer by inhibiting JAK2/STAT3 signaling and decreasing fibrinogen gamma chain (FGG) expression[J]. Am J Cancer Res, 2020, 10(3): 939-952.
GREENSHIELDS A L, DOUCETTE C D, SUTTON K M, et al. Piperine inhibits the growth and motility of triple-negative breast cancer cells[J]. Cancer Lett, 2015, 357(1): 129-140.
DO M T, KIM H G, CHOI J H, et al. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells[J]. Food Chem, 2013, 141(3): 2591-2599.
TIAN D, LI Y, LI X, et al. Aloperine inhibits proliferation, migration and invasion and induces apoptosis by blocking the Ras signaling pathway in human breast cancer cells[J]. Mol Med Rep, 2018, 18(4): 3699-3710.
LI L, LI X, WANG L, et al. Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells[J]. Cell Physiol Biochem, 2012, 30(3): 631-641.
ZHOU B G, WEI C S, ZHANG S, et al. Matrine reversed multidrug resistance of breast cancer MCF‐7/ADR cells through PI3K/AKT signaling pathway[J]. J Cell Biochem, 2018, 119(5): 3885-3891.
DU J, LI J, SONG D, et al. Matrine exerts anti-breast cancer activity by mediating apoptosis and protective autophagy via the AKT/mTOR pathway in MCF-7 cells[J]. Mol Med Rep, 2020, 22(5): 3659-3666.
YU P, LIU Q, LIU K, et al. Matrine suppresses breast cancer cell proliferation and invasion via VEGF-Akt-NF-κB signaling[J]. Cytotechnology, 2009, 59(3): 219-229.
MOHSENIKIA M, ALIZADEH A M, KHODAYARI S, et al. The protective and therapeutic effects of alpha-solanine on mice breast cancer[J]. Eur J Pharmacol, 2013, 718(1-3): 1-9.
叶斌,魏健,熊正宁,等. 龙葵碱提高人乳腺癌MCF-7细胞对顺铂的敏感性的作用机制研究[J]. 四川中医,2021, 39(10): 44-49.
XU W, DEBEB B G, LACERDA L, et al. Tetrandrine, a compound common in Chinese traditional medicine, preferentially kills breast cancer tumor initiating cells (TICs) in vitro[J]. Cancers (Basel), 2011, 3(2): 2274-2285.
PATEL K, CHOWDHURY N, DODDAPANENI R, et al. Piperlongumine for enhancing oral bioavailability and cytotoxicity of docetaxel in triple-negative breast cancer[J]. J Pharm Sci, 2015, 104(12): 4417-4426.
LI X, WANG K, REN Y, et al. MAPK signaling mediates sinomenine hydrochloride-induced human breast cancer cell death via both reactive oxygen species-dependent and-independent pathways: an in vitro and in vivo study[J]. Cell Death Dis, 2014, 5(7): e1356.
LI X, LI P, LIU C, et al. Sinomenine hydrochloride inhibits breast cancer metastasis by attenuating inflammation-related epithelial-mesenchymal transition and cancer stemness[J]. Oncotarget, 2017, 8(8): 13560-13574.
GAO G, LIANG X, MA W. Sinomenine restrains breast cancer cells proliferation, migration and invasion via modulation of miR-29/PDCD-4 axis[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 3839-3846.
SONG L, LIU D, ZHAO Y, et al. Sinomenine inhibits breast cancer cell invasion and migration by suppressing NF-κB activation mediated by IL-4/miR-324-5p/CUEDC2 axis[J]. Biochem Biophys Res Commun, 2015, 464(3): 705-710.
SONG L, ZHANG H, HU M, et al. Sinomenine inhibits hypoxia induced breast cancer side population cells metastasis by PI3K/Akt/mTOR pathway[J]. Bioorg Med Chem, 2021, 31: 115986.
ZHANG Y, ZOU B, TAN Y, et al. Sinomenine inhibits osteolysis in breast cancer by reducing IL-8/CXCR1 and c-Fos/NFATc1 signaling[J]. Pharmacol Res, 2019, 142: 140-150.
YANG S, SUN S, XU W, et al. Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway[J]. Mol Med Rep, 2020, 21(4): 1819-1832.
叶媚娜,陈红风,周瑞娟,等. 黄芪多糖对基底细胞样乳腺癌细胞增殖和Akt磷酸化的影响[J]. 中西医结合学报,2011, 9(12): 1339-1346.
LI W, SONG K, WANG S, et al. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 685-695.
DENG G, LIN H, SEIDMAN A, et al. A phase I/Ⅱ trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects[J]. J Cancer Res Clin Oncol, 2009, 135(9): 1215-1221.
李明,王涛. 香菇多糖联合AC方案及紫杉醇治疗三阴性乳腺癌患者效果分析[J]. 医学理论与实践,2022, 35(12): 2223-2225.
唐英华,黄晓阳,姜文洋. 香菇多糖联合化疗对中晚期乳腺癌患者近远期疗效的影响[J]. 医学理论与实践,2019, 32(21): 3471-3473.
ZHANG M, ZHANG Y, ZHANG L, et al. Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China[J]. Prog Mol Biol Transl Sci, 2019, 163: 297-328.
LI W Y, WANG J, HU H, et al. Functional polysaccharide Lentinan suppresses human breast cancer growth via inducing autophagy and caspase-7-mediated apoptosis[J]. J Funct Foods, 2018, 45: 75-85.
RAZALI F N, SINNIAH S K, HUSSIN H, et al. Tumor suppression effect of Solanum nigrum polysaccharide fraction on Breast cancer via immunomodulation[J]. Int J Biol Macromol, 2016, 92: 185-193.
LI W, HU X, LI Y, et al. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1[J]. J Nat Med, 2021, 75(4): 854-870.
ROLDAN DEAMICIS A, ALONSO E, BRIE B, et al. Maitake Pro4X has anti‐cancer activity and prevents oncogenesis in BALBc mice[J]. Cancer Med, 2016, 5(9): 2427-2441.
徐文琴,吴艳红,余方流,等. 香菇多糖抑制乳腺癌4T1细胞小鼠移植瘤增殖机制研究[J]. 中华肿瘤防治杂志,2021, 28(2): 111-116.
DU X, ZHANG J, LIU L, et al. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells[J]. J Zhejiang Univ Sci B, 2022, 23(4): 286-299.
SHEN L, DU G. Lycium barbarum polysaccharide stimulates proliferation of MCF-7 cells by the ERK pathway[J]. Life Sci, 2012, 91(9-10): 353-357.
HUANG X, ZHANG Q, JIANG Q, et al. Polysaccharides derived from Lycium barbarum suppress IGF-1-induced angiogenesis via PI3K/HIF-1α/VEGF signalling pathways in MCF-7 cells[J]. Food Chem, 2012, 131(4): 1479-1484.
刘楠,朱琳,李纳,等. 红花多糖通过阻断PI3K/Akt/mTOR通路诱导人乳腺癌MDA-MB-435细胞凋亡的机制研究[J]. 中草药,2018, 49(18): 4374-4379.
LUO Z, ZENG H, YE Y, et al. Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cell[J]. Mol Med Rep, 2015, 11(6): 4611-4616.
JIANG J, SLIVOVA V, HARVEY K, et al. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-κB signaling[J]. Nutr Cancer, 2004, 49(2): 209-216.
SHANG D, LI Y, WANG C, et al. A novel polysaccharide from Se-enriched Ganoderma lucidum induces apoptosis of human breast cancer cells[J]. Oncol Rep, 2011, 25(1): 267-272.
何文博,李立云,袁洋,等. 党参多糖通过LncRNA CCHE1对乳腺癌细胞MCF-7增殖和凋亡的影响[J]. 毒理学杂志,2022, 36(2): 147-151.
LUO Z, HU X, XIONG H, et al. A polysaccharide from Huaier induced apoptosis in MCF-7 breast cancer cells via down-regulation of MTDH protein[J]. Carbohydr Polym, 2016, 151: 1027-1033.
王明浩. 槐耳多糖抑制三阴性乳腺癌侵袭转移能力的作用及机制研究[D]. 重庆:中国人民解放军陆军军医大学,2020.
ZHOU H, YAN Y, ZHANG X, et al. Ginseng polysaccharide inhibits MDA-MB-231 cell proliferation by activating the inflammatory response[J]. Exp Ther Med, 2020, 20(6): 229.
AL-SHARIF I, REMMAL A, ABOUSSEKHRA A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation[J]. BMC Cancer, 2013, 13(1): 1-10.
ABDULLAH M L, HAFEZ M M, AL-HOSHANI A, et al. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells[J]. BMC Complement Altern Med, 2018, 18(1): 1-11.
ISLAM S S, AL SHARIF I, SULTAN A, et al. Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH‐positive breast cancer stem cells and the NF-κB signaling pathway[J]. Mol Carcinog, 2018, 57(3): 333-346.
HASSAN Z K, DAGHESTANI M H. Curcumin effect on MMPs and TIMPs genes in a breast cancer cell line[J]. Asian Pac J Cancer Prev, 2012, 13(7): 3259-3264.
HU S, XU Y, MENG L, et al. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells[J]. Exp Ther Med, 2018, 16(2): 1266-1272.
LAI H, CHIEN S, KUO S, et al. The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: an in vitro and in vivo comparison study with herceptin[J]. Evid Based Complement Alternat Med, 2012, 2012: 486568.
BAYET-ROBERT M, KWIATOWSKI F, LEHEURTEUR M, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer[J]. Cancer Biol Ther, 2010, 9(1): 8-14.
SASAKI H, SUNAGAWA Y, TAKAHASHI K, et al. Innovative preparation of curcumin for improved oral bioavailability[J]. Biol Pharm Bull, 2011, 34(5): 660-665.
KANAI M, IMAIZUMI A, OTSUKA Y, et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers[J]. Cancer Chemother Pharmacol, 2012, 69(1): 65-70.
KANAI M, OTSUKA Y, OTSUKA K, et al. A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients[J]. Cancer Chemother Pharmacol, 2013, 71(6): 1521-1530.
WOO C C, LOO S Y, GEE V, et al. Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway[J]. Biochem Pharmacol, 2011, 82(5): 464-475.
DASTJERDI M N, MEHDIABADY E M, IRANPOUR F G, et al. Effect of thymoquinone on P53 gene expression and consequence apoptosis in breast cancer cell line[J]. Int J Prev Med, 2016, 7: 66.
WOO C C, HSU A, KUMAR A P, et al. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS[J]. PLoS One, 2013, 8(10): e75356.
SHANMUGAM M K, AHN K S, HSU A, et al. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis[J]. Front Pharmacol, 2018, 9: 1294.
ADINEW G M, TAKA E, MOCHONA B, et al. Therapeutic potential of Thymoquinone in triple-negative breast cancer prevention and progression through the modulation of the tumor microenvironment[J]. Nutrients, 2021, 14(1): 79.
GANJI-HARSINI S, KHAZAEI M, RASHIDI Z, et al. Thymoquinone could increase the efficacy of tamoxifen induced apoptosis in human breast cancer cells: An in vitro study[J]. Cell J, 2016, 18(2): 245-254.
ŞAKALAR Ç, İZGI K, İSKENDER B, et al. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer[J]. Tumour Biol, 2016, 37(4): 4467-4477.
BASHMAIL H A, ALAMOUDI A A, NOORWALI A, et al. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities[J]. Sci Rep, 2018, 8(1): 11674.
ARAFA E A, ZHU Q, SHAH Z I, et al. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells[J]. Mutat Res, 2011, 706(1-2): 28-35.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构