图1 黄连素治疗非酒精性脂肪性肝炎(NASH)靶点
扫 描 看 全 文
引用本文
阅读全文PDF
借助网络药理学、分子对接技术及体外细胞实验探讨黄连素治疗非酒精性脂肪性肝炎(NASH)的潜在作用机制,为临床用药提供理论依据。
借助中药系统药理学数据库和分析平台(TCMSP)获取黄连素的吸收、分布、代谢和排泄(ADME)特征性信息,采用毒物基因组学数据库(CTD)、人类基因综合数据库(GeneCards)筛选黄连素靶点基因及NASH相关基因,并借助Bioinformatics工具获得基因交集;采用Cytoscape v3.6.1软件构建“黄连素-目标基因-通路”网络,进行基因互作网络分析、功能富集分析,以确定黄连素治疗NASH的关键基因。使用webina分子对接技术评估黄连素与关键基因靶点的结合能力。取对数生长期的小鼠正常肝细胞(AML12),分为空白组、模型组和黄连素各剂量组,各组给予相应干预,实时荧光定量逆转录聚合酶链式反应(RT-qPCR)法检测验证相关作用靶点。
黄连素治疗NASH的关键基因有白介素-10(IL-10)、前列腺素内过氧化物合酶2(PTGS2)、血红素加氧酶1(HMOX1)、CC趋化因子配体2(CCL2)、重组人白介素8(CXCL8)、Toll样受体4(TLR4)、JUN原癌基因(JUN)、基质金属蛋白酶9(MMP9)、肿瘤坏死因子(TNF)、白介素-6(IL-6)等,分子对接结果表明黄连素与TLR4、CCL2、MMP9、CXCL8蛋白具有良好的结合性能。体外细胞实验结果表明,与空白组比较,模型组PTGS2、CCL2和TLR4 mRNA表达升高(P<0.01);与模型组比较,黄连素各剂量组PTGS2、CCL2和TLR4 mRNA表达降低(P<0.01),呈现剂量依赖趋势。
黄连素可以靶向调控NASH发生发展过程中的关键分子构成的网络,进而发挥系统药理作用。
To explore the potential mechanism of berberine in the treatment of nonalcoholic steatohepatitis(NASH) based on network pharmacology, molecular docking and in vitro cell experiments, and to provide a theoretical basis for clinical application.
Characteristic information of absorption, distribution, metabolism, and excretion of berberine was obtained from the Traditional Chinese Medicine System Pharmacology Database (TCMSP). The potential target genes of berberine and NASH-related genes were obtained from Comparative Toxicogenomics Database (CTD) and the GeneCards human gene database (GeneCards). The gene intersections were obtained with the Bioinformatics tool. Cytoscape v3.6.1 was used to construct a “safranin-target gene-pathway” network, and gene-gene interaction network analysis and functional enrichment analysis were performed to identify the key genes of berberine for NASH treatment. Molecular docking technology was used to evaluate the binding ability of berberine to key gene targets via webina. Normal hepatocytes (AML12) of mice at logarithmic growth stage were divided into blank group, model group and each dose group of berberine, and each group was given the corresponding intervention. The relevant target genes were verified by RT-qPCR assay.
The network analysis showed that the key genes of berberine for NASH treatment were interleukin-10 (IL-10), prostaglandin endoperoxide synthase 2 (PTGS2), heme oxygenase 1 (HMOX1), CC chemokine ligand 2 (CCL2), recombinant human interleukin 8 (CXCL8), Toll-like receptor 4 (TLR4), Jun proto-oncogene (JUN), matrix metalloproteinase 9 (MMP9), tumor necrosis factor (TNF) and interleukin-6 (IL-6). The molecular docking results showed that berberine had good binding properties with TLR4, CCL2, MMP9 and CXCL8 proteins. The results of in vitro cell experiments showed that PTGS2, CCL2 and TLR4 mRNA were highly expressed in the model (P<0.01); and PTGS2, CCL2 and TLR4 mRNA were lowly expressed in each dose group (P<0.01), showing a dose-dependent trend.
Berberine can exert systemic pharmacological effects by regulating a network of key molecules in the occurrence and development of NASH.
非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)是由多种因素导致的肝脏疾病,其特征为肝细胞脂肪变性和肝细胞损伤,伴或不伴肝纤维化,与心脑血管疾病、肝硬化、肝细胞癌的发生密切相关。NASH的发病是多种病理过程共同作用的结果,如脂毒性、氧化应激、免疫细胞调控失常、肝细胞凋亡,涉及多个靶点,最终导致肝免疫细胞浸润和炎症,肝星状细胞激活[
黄连素对糖脂代谢有独特的药理作用,如抗氧化、抗炎、肝细胞保护,可有效治疗糖尿病、脂肪肝,临床应用广泛[
采用中药系统药理学数据库和分析平台(TCMSP,https://tcmsp-e.com/)[
通过比较毒物基因组学数据库(CTD,http://ctdbase.org/)[
使用Cytoscape v3.6.1软件(https://www.nigms.nih.gov/)构建“黄连素-目标基因-通路”网络图。
将靶基因导入GeneMANIA(http://www.genemania.org)和String(https://string-db.org)数据库,分析黄连素作用于NASH的相关基因,探讨基因互作网络关系并得到网络中的hub基因。
借助WebGestalt(http://www.webgestalt.org)数据库对靶基因进行基因本体(GO)、京都基因与基因组百科全书(KEGG)和基因探针(GSEA)通路富集分析[
使用webina数据库(https://durrantlab.pitt.edu/webina/) [
1.7.1 细胞培养与干预
小鼠正常肝细胞(AML12)购自美国菌种保藏中心(ATCC)(批号:CRL-2254),采用含10%胎牛血清及1%青霉素-链霉素的DMEM/F12基础培养基进行培养,培养条件为37 ℃、5%CO2。
1.7.2 药物与试剂
黄连素,美国TargetMol公司(批号:T4S0797);DMEM/F12基础培养基,中国中乔新舟生物科技有限公司(批号:ZQ-606); 二甲基亚砜(DMSO),美国Sigma-Aldrich公司(批号:C6164-50ML);TRIzol,生工生物工程(上海)股份有限公司(批号:B511311-0100);RNA反转录试剂盒、荧光定量试剂盒,日本Takara株式会社(批号分别为RR047B、RR820B)。
1.7.3 主要仪器
PCR热循环仪(型号:A24811)、实时荧光定量PCR仪(型号:A31665),美国Thermo Fisher公司。
1.7.4 细胞分组与干预
AML12细胞密度达80%~90%后传代培养于含有棕榈酸(PA)200 μmol/L的培养基中,设为模型组;在此基础上,给予梯度浓度的黄连素(6.25、12.5、25、50 μmol/L)进行干预,分别设为黄连素6.25、12.50、25.00、50.00 μmol/L组;另取AML12细胞培养于不含PA的正常培养基中,正常培养不予处理,设为空白组。各组均培养诱导24 h,用于后续实验。
1.7.5 实时荧光定量逆转录聚合酶链式反应(RT-qPCR)法检测相关基因表达
取适量AML12细胞并转移至EP管中,加入TRIzol提取总RNA,加入逆转录酶进行逆转录制备cDNA。以甘油醛-3-磷酸脱氢酶基因(GAPDH)为内参进行PCR扩增,检测各组AML12细胞中前列腺素内过氧化物合酶2(PTGS2)、CC趋化因子配体2(CCL2)和Toll样受体4(TLR4)mRNA的表达水平。反应条件:95 ℃预变性15 min,95 ℃变性10 s,60 ℃退火20 s,72 ℃延伸25 s;40个循环。扩增引物由苏州金唯智生物科技有限公司合成。引物序列见
基因名称 | 序列 | 长度/bp |
---|---|---|
PTGS2 | F:5'-TGCACTATGGTTACAAAAGCTGG-3' | 23 |
R:5'-TCAGGAAGCTCCTTATTTCCCTT-3' | 23 | |
CCL2 | F:5'-TAAAAACCTGGATCGGAACCAAA-3' | 23 |
R:5'-GCATTAGCTTCAGATTTACGGGT-3' | 23 | |
TLR4 | F:5'-AAATGCACTGAGCTTTAGTGGT-3' | 22 |
R:5'-TGGCACTCATAATGATGGCAC-3' | 21 | |
GAPDH | F:5'-AGGAGTAAGAAACCCTGGAC-3' | 20 |
R:5'-CTGGGATGGAATTGTGAG-3' | 18 |
注: PTGS2为前列腺素内过氧化物合酶2基因,CCL2为CC趋化因子配体2基因,TLR4为Toll样受体4基因,GAPDH为甘油醛-3-磷酸脱氢酶基因。
所有分析均使用所用工具的默认值进行。计量资料以ˉx±s表示,多组间比较采用单因素方差分析,两组间比较采用t检验。CTD的查询结果中仅显示得分≥1的预测候选目标蛋白。所有报告的P值均为双尾,以P<0.01为差异有统计学意义。
借助TCMSP共得到黄连素的12种AMDE特性。见
项目 | 特征值 |
---|---|
MW/Da | 336.39 |
AlogP | 3.45 |
Hdon | 0.00 |
Hacc | 4.00 |
OB/% | 36.86 |
Caco-2 | 1.24 |
BBB | 0.57 |
DL | 0.78 |
FASA- | 0.19 |
TPSA | 40.80 |
RBN | 2.00 |
HL/h | 6.57 |
注: MW为分子量,AlogP为油水分配系数,Hdon为氢键供体,Hacc为氢键受体,OB为口服生物利用度,Caco-2为肠上皮渗透性,BBB为血脑屏障,DL为类药性,FASA-为负表面积,TPSA为化合物极性,RBN为化合物中可旋转键的个数,HL为药物半衰期。
借助CTD数据库筛选黄连素的靶基因,去除非人源基因后,共得到250个黄连素作用的靶基因。借助GeneCards数据库共得到NASH相关基因501个。通过Bioinformatics工具获得黄连素靶基因与NASH相关基因的交集,即为黄连素靶向NASH的基因,主要包括炎症因子及转录因子。见
英文缩写 | 中文全称 | 度数 |
---|---|---|
IL-10 | 白介素-10基因 | 9.615 4 |
PTGS2 | 前列腺素内过氧化物合酶2基因 | 9.615 4 |
HMOX1 | 血红素加氧酶1基因 | 9.615 4 |
CCL2 | 趋化因子配体2基因 | 8.952 4 |
CXCL8 | 重组人白介素8基因 | 8.952 4 |
TLR4 | Toll样受体4基因 | 8.382 4 |
JUN | JUN原癌基因 | 8.039 2 |
MMP9 | 基质金属蛋白酶9基因 | 7.777 8 |
TNF | 肿瘤坏死因子基因 | 7.333 3 |
IL-6 | 白介素-6基因 | 6.153 8 |
图1 黄连素治疗非酒精性脂肪性肝炎(NASH)靶点
根据目标和途径分析,我们借助Cytoscape v3.6.1软件构建了“黄连素-目标基因-通路”网络,包括65个节点和217个边缘。见
图2 “黄连素-目标基因-通路”网络图
注: 图中红色的长方形、蓝紫色的倒三角形和绿色的椭圆分别对应黄连素、目标基因和通路。
将靶基因导入GeneMANIA,发现37.05%的基因具有物理相互作用,20.16%发挥了共定位作用,19.43%具有相似的共表达特性,其他还有相关途径、共有的蛋白质结构域和遗传相互作用。见
图3 基因互作网络
注: 图中连接颜色表示不同的相关性。纯黑色圆圈中的基因是查询词,带灰色条纹圆圈中的基因表示与查询基因相关的基因。
将靶基因导入String数据库(PPI得分>0.7)构建PPI网络,PPI网络由84个交互节点和517个交互边缘组成(见
图4 黄连素治疗非酒精性脂肪性肝炎的靶点基因互作网络示例
注: IL-10为白介素-10基因,PTGS2为前列腺素内过氧化物合酶2基因,HMOX1为血红素加氧酶1基因,CCL2为CC趋化因子配体2基因,CXCL8为重组人白介素8基因,TLR4为Toll样受体4基因,JUN 为JUN原癌基因,MMP9为基质金属蛋白酶9基因,TNF为肿瘤坏死因子基因,IL-6为白介素-6基因。
图5 黄连素治疗非酒精性脂肪性肝炎的靶基因
如
图6 黄连素治疗非酒精性脂肪性肝炎靶点的GO富集分析
KEGG通路分析显示,靶基因显著富集在AGE-RAGE糖尿病并发症的信号通路(hsa04933)及非酒精性脂肪性肝病(NAFLD)(hsa04932)、胰岛素抵抗(hsa04931)、动脉粥样硬化的流体剪切力(hsa05418)、乙型肝炎(hsa05161)等通路。NASH的主要病理是肝细胞脂肪变和炎症,伴有肝细胞的坏死和炎症细胞浸润。上述生物学过程或病理变化可能参与NASH的致病,而这些病理变化可采用黄连素进行治疗。见
图7 黄连素治疗非酒精性脂肪性肝炎靶点的KEGG通路分析
上传黄连素的MOL2结构信息至webina,用于分析其与IL-10、PTGS2、HMOX1、CCL2、CXCL8、TLR4、JUN、MMP9、TNF、IL-6的结合潜力。结果表明,黄连素与TLR4、CCL2、MMP9、CXCL8蛋白之间存在强相互作用,提示黄连素对NASH具有治疗作用。见
图8 分子对接示意图
注: TLR4为Toll样受体4,CCL2为CC趋化因子配体2,MMP9为基质金属蛋白酶9,CXCL8为重组人白介素8。
体外细胞实验结果显示,与空白组比较,模型组PTGS2、CCL2和TLR4 mRNA表达升高(P<0.01);与模型组比较,黄连素各剂量组PTGS2、CCL2和TLR4 mRNA表达降低(P<0.01),并呈现剂量依赖趋势。见
图9 黄连素对小鼠正常肝细胞相关基因表达的影响
注: TLR4为Toll 样受体4基因,CCL2为CC趋化因子配体2基因,PTGS2为前列腺素内过氧化物合酶2基因。BBR为黄连素(代表黄连素各剂量组,μmol/L)。与空白组比较,*P<0.01;与模型组比较,#P<0.01。用2-ΔΔCt法表示基因的相对表达量。n=3,ˉx±s。
NASH是造成肝脏损伤、肝脏不良结局的常见疾病,近年来其患病率呈不断上升趋势[
在药物开发中,目标基因鉴定是第一步。本研究共鉴定出与NASH相关的基因501个,匹配后得到与黄连素靶点重叠的基因84个。GeneMANIA可以提供有关物理相互作用、共定位、共表达以及共有蛋白结构域的信息,由此提示靶标及其相互作用蛋白可能具有相同或相似的功能。为了更深入地了解黄连素对NASH的影响,我们对靶基因进行了GO功能分析和KEGG通路富集分析。GO分析结果表明,黄连素靶基因主要与炎症反应、应激反应过程、代谢过程的负调控及免疫系统的调控等相关。KEGG通路分析结果表明,黄连素靶基因显著富集在NAFLD信号通路、胰岛素抵抗信号通路、AMPK信号通路、乙型肝炎信号通路,上述途径参与了NASH进程中的关键步骤。已有研究[
已有研究证实,NASH患者的基因表达会发生变化,这些研究多聚焦在细胞或动物中基因的转录水平。PTGS2是合成前列腺的关键速率限制酶,也是重要的促炎因子和治疗炎症疾病的核心目标。PTGS2参与了NASH的发展,选择性PTGS2抑制剂可以显著改善NASH模型小鼠的肝脂肪变性、炎症和肝损伤;作为炎症和氧化应激的桥梁,PTGS2不仅能够产生炎症细胞因子,也是脂质代谢中的重要酶[
综上,黄连素可以靶向调控NASH发生发展过程中的关键分子构成的网络,进而发挥系统药理作用,有望被开发为一种安全有效的抗NASH药物。
ROTMAN Y, SANYAL A J. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease[J]. Gut, 2017, 66(1): 180-190. [百度学术]
PAN B, SHI X, DING T, et al. Unraveling the action mechanism of polygonum cuspidatum by a network pharmacology approach[J]. Am J Transl Res, 2019, 11(11): 6790-6811. [百度学术]
NATI M, HADDAD D, BIRKENFELD A L, et al. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH)[J]. Rev Endocr Metab Disord, 2016, 17(1): 29-39. [百度学术]
LI C L, ZHOU W J, JI G, et al. Natural products that target macrophages in treating non-alcoholic steatohepatitis[J]. World J Gastroenterol, 2020, 26(18): 2155-2165. [百度学术]
YIN J, ZHANG H, YE J. Traditional Chinese medicine in treatment of metabolic syndrome[J]. Endocr Metab Immune Disord Drug Targets, 2008, 8(2): 99-111. [百度学术]
BRUSQ J M, ANCELLIN N, GRONDIN P, et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine[J]. J Lipid Res, 2006, 47(6): 1281-1288. [百度学术]
CHANG X, YAN H, FEI J, et al. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats[J]. J Lipid Res, 2010, 51(9): 2504-2515. [百度学术]
YAO S, YUAN Y, ZHANG H, et al. Berberine attenuates the abnormal ectopic lipid deposition in skeletal muscle[J]. Free Radic Biol Med, 2020, 159: 66-75. [百度学术]
YAN H M, XIA M F, WANG Y, et al. Efficacy of berberine in patients with non-alcoholic fatty liver disease[J]. PLoS One, 2015, 10(8): e134172. [百度学术]
RU J, LI P, WANG J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13. [百度学术]
PEI T, ZHENG C, HUANG C, et al. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula[J]. J Ethnopharmacol, 2016, 190: 272-287. [百度学术]
ZHANG W, TAO Q, GUO Z, et al. Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by traditional Chinese medicine[J]. Sci Rep, 2016, 6: 32400. [百度学术]
DAVIS A P, GRONDIN C J, JOHNSON R J, et al. The Comparative Toxicogenomics Database: update 2017[J]. Nucleic Acids Res, 2017, 45(D1): D972-D978. [百度学术]
LIAO Y, WANG J, JAEHNIG E J, et al. Web Gestalt 2019: gene set analysis toolkit with revamped UIs and APIs[J]. Nucleic Acids Res, 2019, 47(W1): W199-W205. [百度学术]
KOCHNEV Y, HELLEMANN E, CASSIDY K C, et al. Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser[J]. Bioinformatics, 2020, 36(16): 4513-4515. [百度学术]
SUMIDA Y, YONEDA M. Current and future pharmacological therapies for NAFLD/NASH[J]. J Gastroenterol, 2018, 53(3): 362-376. [百度学术]
ZHANG W, BAI Y, WANG Y, et al. Polypharmacology in drug discovery: a review from systems pharmacology perspective[J]. Curr Pharm Des, 2016, 22(21): 3171-3181. [百度学术]
ZHANG Y F, HUANG Y, NI Y H, et al. Systematic elucidation of the mechanism of geraniol via network pharmacology[J]. Drug Des Devel Ther, 2019, 13: 1069-1075. [百度学术]
CHAGAS C M, MOSS S, ALISARAIE L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski's Rule of Five[J]. Int J Pharm, 2018, 549(1-2): 133-149. [百度学术]
ZHU X, BIAN H, GAO X. The potential mechanisms of berberine in the treatment of nonalcoholic fatty liver disease[J]. Molecules, 2016, 21(10): 1336. [百度学术]
WANG K, FENG X, CHAI L, et al. The metabolism of berberine and its contribution to the pharmacological effects[J]. Drug Metab Rev, 2017, 49(2): 139-157. [百度学术]
FENG X, SUREDA A, JAFARI S, et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics[J]. Theranostics, 2019, 9(7): 1923-1951. [百度学术]
WU J L, CHEN C, HU X, et al. Suppressing cyclooxygenase-2 prevents nonalcoholic and inhibits apoptosis of hepatocytes that are involved in the Akt/p53 signal pathway[J]. Biochem Biophys Res Commun, 2016, 469(4): 1034-1040. [百度学术]
BAECK C, WEHR A, KARLMARK K R, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury[J]. Gut, 2012, 61(3): 416-426. [百度学术]
KANDA H, TATEYA S, TAMORI Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity[J]. J Clin Invest, 2006, 116(6): 1494-1505. [百度学术]
HAUKELAND J W, DAMAS J K, KONOPSKI Z, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2[J]. J hepatol, 2006, 44(6): 1167-1174. [百度学术]
LIU B, XIANG L P, JI J, et al. Sparcl1 promotes nonalcoholic steatohepatitis progression in mice through upregulation of CCL2[J]. J Clin Invest, 2021, 131(20): e144801. [百度学术]
KIZILTAS S, ATA P, COLAK Y, et al. TLR4 gene polymorphism in patients with nonalcoholic fatty liver disease in comparison to healthy controls[J]. Metab Syndr Relat Disord, 2014, 12(3): 165-170. [百度学术]
ZUANY-AMORIM C, HASTEWELL J, WALKER C. Toll-like receptors as potential therapeutic targets for multiple diseases[J]. Nat Rev Drug Discov, 2002, 1(10): 797-807. [百度学术]
ZHAO J, WANG Y, WU X, et al. Inhibition of CCL19 benefits non‑alcoholic fatty liver disease by inhibiting TLR4/NF‑κB‑p65 signaling[J]. Mol Med Rep, 2018, 18(5): 4635-4642. [百度学术]
CHAI F N, ZHANG J, XIANG H M, et al. Protective effect of Coptisine from Rhizoma Coptidis on LPS/D-GalN-induced acute liver failure in mice through up-regulating expression of miR-122[J]. Biomed Pharmacother, 2018, 98: 180-190. [百度学术]
161
浏览量
851
下载量
1
CSCD
4
CNKI被引量
相关文章
相关作者
相关机构