1.上海中医药大学附属曙光医院(上海 201203)
2.上海交通大学医学院附属同仁医院(上海 200336)
3.上海中医药大学(上海 201203)
黄燕萍,女,博士研究生,副主任医师,主要从事中医药防治消化系统疾病的临床与研究工作
孙明瑜,研究员;E-mail:mysun369@126.com
张琴,主任医师;E-mail:zhangq1030@163.com。
扫 描 看 全 文
黄燕萍,伍月兰,孙明瑜,等.基于网络药理学及体外实验验证探讨黄连素治疗非酒精性脂肪性肝炎的作用机制[J].上海中医药杂志,2023,57(5):12-19.
HUANG Yanping,WU Yuelan,SUN Mingyu,et al.Mechanism analysis of berberine in the treatment of nonalcoholic steatohepatitis based on network pharmacology and in vitro experimental verification[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(5):12-19.
黄燕萍,伍月兰,孙明瑜,等.基于网络药理学及体外实验验证探讨黄连素治疗非酒精性脂肪性肝炎的作用机制[J].上海中医药杂志,2023,57(5):12-19. DOI: 10.16305/j.1007-1334.2023.2208001.
HUANG Yanping,WU Yuelan,SUN Mingyu,et al.Mechanism analysis of berberine in the treatment of nonalcoholic steatohepatitis based on network pharmacology and in vitro experimental verification[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(5):12-19. DOI: 10.16305/j.1007-1334.2023.2208001.
目的,2,借助网络药理学、分子对接技术及体外细胞实验探讨黄连素治疗非酒精性脂肪性肝炎(NASH)的潜在作用机制,为临床用药提供理论依据。,方法,2,借助中药系统药理学数据库和分析平台(TCMSP)获取黄连素的吸收、分布、代谢和排泄(ADME)特征性信息,采用毒物基因组学数据库(CTD)、人类基因综合数据库(GeneCards)筛选黄连素靶点基因及NASH相关基因,并借助Bioinformatics工具获得基因交集;采用Cytoscape v3.6.1软件构建“黄连素-目标基因-通路”网络,进行基因互作网络分析、功能富集分析,以确定黄连素治疗NASH的关键基因。使用webina分子对接技术评估黄连素与关键基因靶点的结合能力。取对数生长期的小鼠正常肝细胞(AML12),分为空白组、模型组和黄连素各剂量组,各组给予相应干预,实时荧光定量逆转录聚合酶链式反应(RT-qPCR)法检测验证相关作用靶点。,结果,2,黄连素治疗NASH的关键基因有白介素-10(,IL,-,10,),、,前列腺素内过氧化物合酶2(,PTGS2,),、,血红素加氧酶1(,HMOX1,),、,CC趋化因子配体2(,CCL2,),、,重组人白介素8(,CXCL8,),、,Toll样受体4(,TLR4,),、,JUN原癌基因(,JUN,),、,基质金属蛋白酶9(,MMP9,)、肿瘤坏死因子(,TNF,),、,白介素-6(,IL,-,6,)等,分子对接结果表明黄连素与TLR4、CCL2、MMP9、CXCL8蛋白具有良好的结合性能。体外细胞实验结果表明,与空白组比较,模型组,PTGS2,、,CCL2,和,TLR4, mRNA表达升高(,P,<,0.01);与模型组比较,黄连素各剂量组,PTGS2,、,CCL2,和,TLR4, mRNA表达降低(,P,<,0.01),呈现剂量依赖趋势。,结论,2,黄连素可以靶向调控NASH发生发展过程中的关键分子构成的网络,进而发挥系统药理作用。
Objective,2,To explore the potential mechanism of berberine in the treatment of nonalcoholic steatohepatitis(NASH) based on network pharmacology, molecular docking and ,in vitro, cell experiments, and to provide a theoretical basis for clinical application.,Methods,2,Characteristic information of absorption, distribution, metabolism, and excretion of berberine was obtained from the Traditional Chinese Medicine System Pharmacology Database (TCMSP). The potential target genes of berberine and NASH-related genes were obtained from Comparative Toxicogenomics Database (CTD) and the GeneCards human gene database (GeneCards). The gene intersections were obtained with the Bioinformatics tool. Cytoscape v3.6.1 was used to construct a “safranin-target gene-pathway” network, and gene-gene interaction network analysis and functional enrichment analysis were performed to identify the key genes of berberine for NASH treatment. Molecular docking technology was used to evaluate the binding ability of berberine to key gene targets via webina. Normal hepatocytes (AML12) of mice at logarithmic growth stage were divided into blank group, model group and each dose group of berberine, and each group was given the corresponding intervention. The relevant target genes were verified by RT-qPCR assay.,Results,2,The network analysis showed that the key genes of berberine for NASH treatment were interleukin-10 (,IL,-,10,), prostaglandin endoperoxide synthase 2 (,PTGS2,), heme oxygenase 1 (,HMOX1,), CC chemokine ligand 2 (,CCL2,), recombinant human interleukin 8 (,CXCL8,), Toll-like receptor 4 (,TLR4,), Jun proto-oncogene (,JUN,), matrix metalloproteinase 9 (,MMP9,), tumor necrosis factor (,TNF,) and interleukin-6 (,IL,-,6,). The molecular docking results showed that berberine had good binding properties with TLR4, CCL2, MMP9 and CXCL8 proteins. The results of ,in vitro, cell experiments showed that ,PTGS2,, ,CCL2 ,and ,TLR4, mRNA were highly expressed in the model (,P,<,0.01); and ,PTGS2,,, CCL2, and ,TLR4, mRNA were lowly expressed in each dose group (,P,<,0.01), showing a dose-dependent trend.,Conclusion,2,Berberine can exert systemic pharmacological effects by regulating a network of key molecules in the occurrence and development of NASH.
非酒精性脂肪性肝炎黄连素网络药理学分子对接细胞实验中药
non-alcoholic steatohepatitisberberinenetwork pharmacologymolecular dockingcell experimentstraditional Chinese herbal medicine
ROTMAN Y, SANYAL A J. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease[J]. Gut, 2017, 66(1): 180-190.
PAN B, SHI X, DING T, et al. Unraveling the action mechanism of polygonum cuspidatum by a network pharmacology approach[J]. Am J Transl Res, 2019, 11(11): 6790-6811.
NATI M, HADDAD D, BIRKENFELD A L, et al. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH)[J]. Rev Endocr Metab Disord, 2016, 17(1): 29-39.
LI C L, ZHOU W J, JI G, et al. Natural products that target macrophages in treating non-alcoholic steatohepatitis[J]. World J Gastroenterol, 2020, 26(18): 2155-2165.
YIN J, ZHANG H, YE J. Traditional Chinese medicine in treatment of metabolic syndrome[J]. Endocr Metab Immune Disord Drug Targets, 2008, 8(2): 99-111.
BRUSQ J M, ANCELLIN N, GRONDIN P, et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine[J]. J Lipid Res, 2006, 47(6): 1281-1288.
CHANG X, YAN H, FEI J, et al. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats[J]. J Lipid Res, 2010, 51(9): 2504-2515.
YAO S, YUAN Y, ZHANG H, et al. Berberine attenuates the abnormal ectopic lipid deposition in skeletal muscle[J]. Free Radic Biol Med, 2020, 159: 66-75.
YAN H M, XIA M F, WANG Y, et al. Efficacy of berberine in patients with non-alcoholic fatty liver disease[J]. PLoS One, 2015, 10(8): e134172.
RU J, LI P, WANG J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13.
PEI T, ZHENG C, HUANG C, et al. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula[J]. J Ethnopharmacol, 2016, 190: 272-287.
ZHANG W, TAO Q, GUO Z, et al. Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by traditional Chinese medicine[J]. Sci Rep, 2016, 6: 32400.
DAVIS A P, GRONDIN C J, JOHNSON R J, et al. The Comparative Toxicogenomics Database: update 2017[J]. Nucleic Acids Res, 2017, 45(D1): D972-D978.
LIAO Y, WANG J, JAEHNIG E J, et al. Web Gestalt 2019: gene set analysis toolkit with revamped UIs and APIs[J]. Nucleic Acids Res, 2019, 47(W1): W199-W205.
KOCHNEV Y, HELLEMANN E, CASSIDY K C, et al. Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser[J]. Bioinformatics, 2020, 36(16): 4513-4515.
SUMIDA Y, YONEDA M. Current and future pharmacological therapies for NAFLD/NASH[J]. J Gastroenterol, 2018, 53(3): 362-376.
ZHANG W, BAI Y, WANG Y, et al. Polypharmacology in drug discovery: a review from systems pharmacology perspective[J]. Curr Pharm Des, 2016, 22(21): 3171-3181.
ZHANG Y F, HUANG Y, NI Y H, et al. Systematic elucidation of the mechanism of geraniol via network pharmacology[J]. Drug Des Devel Ther, 2019, 13: 1069-1075.
CHAGAS C M, MOSS S, ALISARAIE L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski's Rule of Five[J]. Int J Pharm, 2018, 549(1-2): 133-149.
ZHU X, BIAN H, GAO X. The potential mechanisms of berberine in the treatment of nonalcoholic fatty liver disease[J]. Molecules, 2016, 21(10): 1336.
WANG K, FENG X, CHAI L, et al. The metabolism of berberine and its contribution to the pharmacological effects[J]. Drug Metab Rev, 2017, 49(2): 139-157.
FENG X, SUREDA A, JAFARI S, et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics[J]. Theranostics, 2019, 9(7): 1923-1951.
WU J L, CHEN C, HU X, et al. Suppressing cyclooxygenase-2 prevents nonalcoholic and inhibits apoptosis of hepatocytes that are involved in the Akt/p53 signal pathway[J]. Biochem Biophys Res Commun, 2016, 469(4): 1034-1040.
BAECK C, WEHR A, KARLMARK K R, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury[J]. Gut, 2012, 61(3): 416-426.
KANDA H, TATEYA S, TAMORI Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity[J]. J Clin Invest, 2006, 116(6): 1494-1505.
HAUKELAND J W, DAMAS J K, KONOPSKI Z, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2[J]. J hepatol, 2006, 44(6): 1167-1174.
LIU B, XIANG L P, JI J, et al. Sparcl1 promotes nonalcoholic steatohepatitis progression in mice through upregulation of CCL2[J]. J Clin Invest, 2021, 131(20): e144801.
KIZILTAS S, ATA P, COLAK Y, et al. TLR4 gene polymorphism in patients with nonalcoholic fatty liver disease in comparison to healthy controls[J]. Metab Syndr Relat Disord, 2014, 12(3): 165-170.
ZUANY-AMORIM C, HASTEWELL J, WALKER C. Toll-like receptors as potential therapeutic targets for multiple diseases[J]. Nat Rev Drug Discov, 2002, 1(10): 797-807.
ZHAO J, WANG Y, WU X, et al. Inhibition of CCL19 benefits non‑alcoholic fatty liver disease by inhibiting TLR4/NF‑κB‑p65 signaling[J]. Mol Med Rep, 2018, 18(5): 4635-4642.
CHAI F N, ZHANG J, XIANG H M, et al. Protective effect of Coptisine from Rhizoma Coptidis on LPS/D-GalN-induced acute liver failure in mice through up-regulating expression of miR-122[J]. Biomed Pharmacother, 2018, 98: 180-190.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构