1.上海中医药大学附属岳阳中西医结合医院肝病科(上海 200437)
李振,女,博士研究生,住院医师,主要从事中医药防治肝病的临床研究工作
祝峻峰,主任医师,教授,博士研究生导师; E-mail:Zhujftongling@163.com
扫 描 看 全 文
李振,祝峻峰.中药治疗代谢相关脂肪性肝病的作用机制研究进展[J].上海中医药杂志,2023,57(2):8-13.
LI Zhen,ZHU Junfeng.Research progress on mechanism of action of traditional Chinese herbal medicines for treating metabolism associated fatty liver disease[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(2):8-13.
李振,祝峻峰.中药治疗代谢相关脂肪性肝病的作用机制研究进展[J].上海中医药杂志,2023,57(2):8-13. DOI: 10.16305/j.1007-1334.2023.2206116.
LI Zhen,ZHU Junfeng.Research progress on mechanism of action of traditional Chinese herbal medicines for treating metabolism associated fatty liver disease[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(2):8-13. DOI: 10.16305/j.1007-1334.2023.2206116.
代谢相关脂肪性肝病(MAFLD)是全球慢性肝病的重要病种,它的范围包括从简单的肝脏脂肪变性到脂肪性肝炎以及潜在的肝硬化和肝癌。MAFLD也是2型糖尿病、心血管疾病的独立危险因素。目前,尚无正式批准的特效西药可运用于MAFLD的临床治疗。在现代医学科技日新月异的大时代背景下,中药治疗MAFLD作用机制的研究也在不断突破和前进,并受到广泛关注和认可。综述了中药治疗代谢相关脂肪性肝病的相关作用机制研究进展,以期为MAFLD的临床治疗提供指导。
Metabolism associated fatty liver disease (MAFLD) is an important cause of chronic liver disease in the world, which ranges from simple hepatic steatosis to steatohepatitis, potential cirrhosis and hepatocellular carcinoma. MAFLD is also an independent risk factor for type 2 diabetes and cardiovascular diseases. At present, no officially approved potent drugs are available for the clinical treatment of MAFLD. In the context of the rapid development in modern medical science and technology, the research on the mechanism of action of traditional Chinese herbal medicines for treating MAFLD is advancing, continues to make breakthroughs, and has received wide attention and recognition. Therefore, with a view to providing guidance for the clinical treatment of MAFLD, we reviewed the research progress on the mechanism of action of traditional Chinese herbal medicines for treating MAFLD.
代谢相关脂肪性肝病中药胰岛素抵抗脂质代谢肠道菌群作用机制研究进展
metabolic associated fatty liver diseasetraditional Chinese herbal medicineinsulin resistancelipid metabolismintestinal microfloramechanism of actionresearch progress
BOECKMANS J, ROMBAUT M, DEMUYSER T, et al. Infections at the nexus of metabolic-associated fatty liver disease[J]. Arch Toxicol, 2021, 95(7): 2235-2253.
SAKURAI Y, KUBOTA N, YAMAUCHI T, et al. Role of insulin resistance in MAFLD[J]. Int J Mol Sci, 2021, 22(8): 4156.
ESLAM M, SANYAL A J, GEORGE J. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014.
RAMÍREZ-MEJÍA M M, DÍAZ-OROZCO L E, BARRANCO-FRAGOSO B, et al. A review of the increasing prevalence of metabolic-associated fatty liver disease (MAFLD) in children and adolescents worldwide and in Mexico and the implications for public health[J]. Med Sci Monit, 2021, 27: e934134.
SHEPARD C R. TLR9 in MAFLD and NASH: at the intersection of inflammation and metabolism[J]. Front Endocrinol (Lausanne), 2021, 11: 613639.
CHEN Z, LIU F, ZHENG N, et al. Wuzhi capsule (Schisandra Sphenanthera extract) attenuates liver steatosis and inflammation during non-alcoholic fatty liver disease development[J]. Biomed Pharmacother, 2019, 110: 285-293.
LUCI C, BOURINET M, LECLÈRE P S, et al. Chronic inflammation in non-alcoholic steatohepatitis:molecular mechanisms and therapeutic strategies[J]. Front Endocrinol (Lausanne), 2020, 11:597648.
KAZANKOV K, JÒRGENSEN S M D, THOMSEN K L, et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(3): 145-159.
LEFERE S, TACKE F. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism[J]. JHEP Rep, 2019, 1(1): 30-43.
FAN Y, DONG W, WANG Y, et al. Glycyrrhetinic acid regulates impaired macrophage autophagic flux in the treatment of non-alcoholic fatty liver disease[J]. Front Immunol, 2022, 13: 959495.
LIANG X Y, HONG F F, YANG S L. Astragaloside Ⅳ alleviates liver inflammation, oxidative stress and apoptosis to protect against experimental non-alcoholic fatty liver disease[J]. Diabetes Metab Syndr Obes, 2021, 14: 1871-1883.
LIANG L, YE S, JIANG R, et al. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling[J]. Int Immunopharmacol, 2022, 104: 108306.
李淑娣,李素领,刘江凯,等. 基于网络药理学及分子对接技术探讨绞股蓝治疗代谢相关脂肪性肝病的作用机制[J]. 中国中药杂志,2021, 46(19): 5080-5087.
WANG Q, OU Y, HU G, et al. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice[J]. Br J Pharmacol, 2020, 177(8): 1806-1821.
YANG J, MA W, MEI Q, et al. Protective effect of Fuzi Lizhong Decoction against non-alcoholic fatty liver disease via anti-inflammatory response through regulating p53 and PPARG signaling[J]. Biol Pharm Bull, 2020, 43(11): 1626-1633.
GONZALEZ A, HUERTA-SALGADO C, OROZCO-AGUILAR J, et al. Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD)[J]. Oxid Med Cell Longev, 2020, 2020: 1617805.
ORE A, AKINLOVE O A. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease[J]. Medicina (Kaunas), 2019, 55(2): 26.
PARADIES G, PARADIES V, RUGGIERO F M, et al. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2014, 20(39): 14205-14218.
HONG T, CHEN Y, LI X, et al. The role and mechanism of oxidative stress and nuclear receptors in the development of NAFLD[J]. Oxid Med Cell Longev, 2021, 2021: 6889533.
BARCHITTA M, MAUGERI A, FAVARA G, et al. Nutrition and wound healing: an overview focusing on the beneficial effects of curcumin[J]. Int J Mol Sci, 2019, 20(5): 1119.
CARPINO G, DEL B M, PASTORI D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD[J]. Hepatology, 2020, 72(2): 470-485.
RUBIO-RUIZ M E, GUARNER-LANS V, CANO-MARTÍNEZ A, et al. Resveratrol and quercetin administration improves antioxidant DEFENSES and reduces fatty liver in metabolic syndrome rats[J]. Molecules, 2019, 24(7): 1297.
MUSOLINO V, GLIOZZI M, SCARANO F, et al. Bergamot Polyphenols improve dyslipidemia and pathophysiological features in a mouse model of non-alcoholic fatty liver disease[J]. Sci Rep, 2020, 10(1): 2565.
MIYATA M, FUNAKI A, FUKUHARA C, et al. Taurine attenuates hepatic steatosis in a genetic model of fatty liver disease[J]. J Toxicol Sci, 2020, 45(2): 87-94.
ZHANG Y, WEN J, LIU D, et al. Demethylenetetrahydroberberine alleviates nonalcoholic fatty liver disease by inhibiting the NLRP3 inflammasome and oxidative stress in mice[J]. Life Sci, 2021, 281:119778.
SHRESTHA J, BAEK D J, OH Y S, et al. Protective effect of Cudrania tricuspidata extract against high-fat diet induced nonalcoholic fatty liver disease through Nrf-2/HO-1 pathway[J]. Molecules, 2021, 26(9): 2434.
严海艺,郭瑞. “柴胡-白芍”药对治疗代谢相关脂肪性肝病的网络药理学分析及分子对接验证[J]. 辽宁中医杂志,2022, 49(5): 1-6, 221-222.
ZHOU J, ZHANG N, ALDHAHRANI A, et al. Puerarin ameliorates nonalcoholic fatty liver in rats by regulating hepatic lipid accumulation, oxidative stress, and inflammation[J]. Front Immunol, 2022, 13: 956688.
SOLÍS H J A, GARCÍA R I, PÉREZ C M, et al. Non-alcoholic fatty liver disease. From insulin resistance to mitochondrial dysfunction[J]. Rev Esp Enferm Dig, 2006, 98(11): 844-874.
MARUŠIĆ M, PAIĆ M, KNOBLOCH M, et al. NAFLD, insulin resistance, and diabetes mellitus type 2[J]. Can J Gastroenterol Hepatol, 2021, 2021: 6613827.
GAO Z, HWANG D, BATAILLE F, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex[J]. J Biol Chem, 2002, 277(50): 48115-48121.
ASAI A, CHOU P M, BU H F, et al. Dissociation of hepatic insulin resistance from susceptibility of nonalcoholic fatty liver disease induced by a high-fat and high-carbohydrate diet in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(6): G496-G504.
KHALEEL E F, ABDEL-ALEEM G A, MOSTAFA D G. Resveratrol improves high-fat diet induced fatty liver and insulin resistance by concomitantly inhibiting proteolytic cleavage of sterol regulatory element-binding proteins, free fatty acid oxidation, and intestinal triglyceride absorption[J]. Can J Physiol Pharmacol, 2018, 96(2): 145-157.
KE W, WANG P, WANG X, et al. Dietary Platycodon grandiflorus attenuates hepatic insulin resistance and oxidative stress in high-fat-diet induced non-alcoholic fatty liver disease[J]. Nutrients, 2020, 12(2): 480.
ARAUJO L C C, FEITOSA K B, MURATA G M, et al. Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD[J]. Sci Rep, 2018, 8(1): 11013.
ZHU M, HAO S, LIU T, et al. Lingguizhugan decoction improves non-alcoholic fatty liver disease by altering insulin resistance and lipid metabolism related genes: a whole trancriptome study by RNA-Seq[J]. Oncotarget, 2017, 8(47): 82621-82631.
JIANG W N, LI D, JIANG T, et al. Protective effects of Chaihu Shugan San on nonalcoholic fatty liver disease in rats with insulin resistance[J]. Chin J Integr Med, 2018, 24(2): 125-132.
IPSEN D H, LYKKESFELDT J, TVEDEN-NYBORG P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cell Mol Life Sci, 2018, 75(18): 3313-3327.
NGUYEN P, LERAY V, DIEZ M, et al. Liver lipid metabolism[J]. J Anim Physiol Anim Nutr, 2008, 92(3): 272-283.
CHAMBEL S S, SANTOS-GONCALVES A, DUARTE T L. The dual role of Nrf2 in nonalcoholic fatty liver disease: regulation of antioxidant defenses and hepatic lipid metabolism[J]. Biomed Res Int, 2015, 2015: 597134.
JONES J G. Hepatic glucose and lipid metabolism[J]. Diabetologia, 2016, 59(6): 1098-1103.
ZÁMBÓ V, SIMON-SZABÓ L, SZELÉNYI P, et al. Lipotoxicity in the liver[J]. World J Hepatol, 2013, 5(10): 550-557.
KIM Y J, YOON D S, JUNG U J. Efficacy of nobiletin in improving hypercholesterolemia and nonalcoholic fatty liver disease in high-cholesterol diet-fed mice[J]. Nutr Res Pract, 2021, 15(4): 431-443.
YAO H, TAO X, XU L, et al. Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway[J]. Pharmacol Res, 2018, 131: 51-60.
GU Y, DUAN S, DING M, et al. Saikosaponin D attenuates metabolic associated fatty liver disease by coordinately tuning PPARα and INSIG/SREBP1c pathway[J]. Phytomedicine, 2022, 103: 154219.
BERDJA S, BOUDARENE L, SMAIL L, et al. Scolymus hispanicus (Golden Thistle) ameliorates hepatic steatosis and metabolic syndrome by reducing lipid accumulation, oxidative stress, and inflammation in rats under hyperfatty diet[J]. Evid Based Complement Alternat Med, 2021, 2021: 5588382.
BIAO Y, CHEN J, LIU C, et al. Protective effect of Danshen Zexie Decoction against non-alcoholic fatty liver disease through inhibition of ROS/NLRP3/IL-1β pathway by Nrf2 signaling activation[J]. Front Pharmacol, 2022, 13: 877924.
侯敏. 降糖消脂片改善代谢相关脂肪性肝病的作用机制研究[D]. 北京:北京中医药大学, 2021.
周凯旋,薛嘉宝,鲍慧玮,等. 补阳还五汤对糖尿病引起的代谢相关脂肪性肝病治疗作用的网络药理学与实验研究[J]. 中药药理与临床,2022, 38(3): 15-21.
ARAB J P, KARPEN S J, DAWSON P A, et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology, 2017, 65(1): 350-362.
CHAVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7): 1679-1694.
ZHANG Z, DAI W, WENG S, et al. The association of serum total bile acid with non-alcoholic fatty liver disease in Chinese adults: a cross sectional study[J]. Lipids Health Dis, 2020, 19(1): 18.
SHAPRO H, KOLODZIEJCZYK A A, HALSTUCH D, et al. Bile acids in glucose metabolism in health and disease[J]. J Exp Med, 2018, 215(2): 383-396.
XUE R, SU L, LAI S, et al. Bile acid receptors and the gut-liver axis in nonalcoholic fatty liver disease[J]. Cells, 2021, 10(11): 2806.
WANG S, SHENG F, ZOU L, et al. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism[J]. J Adv Res, 2021, 34: 109-122.
ZHAO W W, XIAO M, WU X, et al. Ilexsaponin A1 ameliorates diet-induced nonalcoholic fatty liver disease by regulating bile acid metabolism in mice[J]. Front Pharmacol, 2021, 12: 771976.
ZHONG D, XIE Z, HUANG B, et al. Ganoderma Lucidum Polysaccharide Peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF[J]. Cell Physiol Biochem, 2018, 49(3): 1163-1179.
CHEN T, YUAN F, WANG H, et al. Perilla oil supplementation ameliorates high-fat/high-cholesterol diet induced nonalcoholic fatty liver disease in rats via enhanced fecal cholesterol and bile acid excretion[J]. Biomed Res Int, 2016, 2016: 2384561.
LI X, ZHAO W, XIAO M, et al. Penthorum chinense Pursh. extract attenuates non-alcholic fatty liver disease by regulating gut microbiota and bile acid metabolism in mice[J]. J Ethnopharmacol, 2022, 294: 115333.
SHARMA S P, SUK K T, KIM D J. Significance of gut microbiota in alcoholic and non-alcoholic fatty liver diseases[J]. World J Gastroenterol, 2021, 27(37): 6161-6179.
MANFREDO V S, HILTENSERGER M, KUMAR V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359(6380): 1156-1161.
THAISS C A, LEVY M, GROSHEVA I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection[J]. Science, 2018, 359(6382): 1376-1383.
PARK E, JEONG J J, WON S M, et al. Gut microbiota-related cellular and molecular mechanisms in the progression of nonalcoholic fatty liver disease[J]. Cells, 2021, 10(10): 2634.
LI Y, LIU T, YAN C, et al. Diammonium Glycyrrhizinate protects against nonalcoholic fatty liver disease in mice through modulation of gut microbiota and restoration of intestinal barrier[J]. Mol Pharm, 2018,15(9): 3860-3870.
HU M, ZHANG L, RUAN Z, et al. The regulatory effects of Citrus Peel Powder on liver metabolites and gut flora in mice with non-alcoholic fatty liver disease (NAFLD)[J]. Foods, 2021, 10(12): 3022.
WANG R R, ZHANG L F, CHEN L P, et al. Structural and functional modulation of gut microbiota by Jiangzhi Granules during the amelioration of nonalcoholic fatty liver disease[J]. Oxid Med Cell Longev, 2021, 2021: 2234695.
CUI H, LI Y, WANG Y, et al. Da-Chai-Hu Decoction ameliorates high fat diet-induced nonalcoholic fatty liver disease through remodeling the gut microbiota and modulating the serum metabolism[J]. Front Pharmacol, 2020, 11: 584090.
BARCHETTA I, CIMINI F A, CAVALLO M G. Vitamin D and metabolic dysfunction-associated fatty liver disease (MAFLD): an update[J]. Nutrients, 2020, 12(11): 3302.
0
浏览量
370
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构