1.上海中医药大学附属第七人民医院中心实验室(上海 200137)
郅音,女,硕士,主治医师,主要从事中西医结合治疗肝病临床研究工作
宋雅楠,副主任药师;E-mail:synabc.123@163.com
扫 描 看 全 文
郅音,马星,张苗,等.金丝桃苷调节非酒精性脂肪性肝病大鼠脂质代谢的作用机制研究[J].上海中医药杂志,2023,57(8):38-43.
ZHI Yin,MA Xing,ZHANG Miao,et al.Mechanism of action of hyperoside in regulating lipid metabolism in rats with non⁃alcoholic fatty liver disease[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(8):38-43.
郅音,马星,张苗,等.金丝桃苷调节非酒精性脂肪性肝病大鼠脂质代谢的作用机制研究[J].上海中医药杂志,2023,57(8):38-43. DOI: 10.16305/j.1007-1334.2023.2205108.
ZHI Yin,MA Xing,ZHANG Miao,et al.Mechanism of action of hyperoside in regulating lipid metabolism in rats with non⁃alcoholic fatty liver disease[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(8):38-43. DOI: 10.16305/j.1007-1334.2023.2205108.
目的,2,探讨金丝桃苷对高脂饮食诱导的非酒精性脂肪性肝病(NAFLD)模型大鼠脂质代谢的影响及其作用机制。,方法,2,Wistar大鼠高脂饮食喂养6周,造模成功后随机分为模型对照组(,n,=10)、金丝桃苷低剂量组(50 mg·kg,-1,,,n,=10)和金丝桃苷高剂量组(100 mg·kg,-1,,,n,=10);另设空白对照组予正常饲料喂养(,n,=10)。各组均灌胃给药,每日1次。每周测量大鼠的体质量;干预6周后,检测大鼠肝功能和脂质代谢指标,苏木精-伊红(HE)染色法观察大鼠肝组织的病理形态改变,Western blot法检测大鼠肝组织脂质代谢相关蛋白的表达水平。,结果,2,与空白对照组比较,模型对照组大鼠肝脏有明显的脂肪变性。与模型对照组比较,金丝桃苷高剂量组大鼠肝内脂滴空泡、肝组织脂肪变性有明显改善,肝组织中总胆固醇(TC)、三酰甘油(TG)、低密度脂蛋白(LDL)水平显著降低(,P,<,0.05),脂肪合成相关蛋白胆固醇调节元件结合蛋白1(SREBP1)、乙酰辅酶A羧化酶(ACC)、脂肪酸合酶(FASN)、硬脂酰辅酶A去饱和酶1(SCD1)表达量显著下调(,P,<,0.05),脂肪分解相关蛋白过氧化物酶体增殖物激活受体α(PPARα)、肉毒碱棕榈酰基转移酶1A(CPT1A)表达量明显增加(,P,<,0.05),且磷酸化腺苷酸活化蛋白激酶α(p-AMPKα)蛋白表达量升高(,P,<,0.05),差异均有统计学意义。,结论,2,金丝桃苷可能通过调节腺苷酸活化蛋白激酶(AMPK)通路抑制肝脏脂质合成,促进脂质分解,说明金丝桃苷可能是治疗NAFLD的潜在药物。
Objective,2,To investigate the effect of hyperoside on lipid metabolism in a high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) model rats and its mechanism of action.,Methods,2,Wistar rats were fed a high-fat diet for 6 weeks. After successful modeling, they were randomly divided into a high-fat diet (HFD) group (,n,=10), a hyperoside low-dose group [50 mg·kg,-1, (LDG), ,n,=10] and a hyperoside high-dose group [100 mg·kg,-1, (HDG), ,n,=10]. A negative control (NC) group was set with rats being fed with normal chow (,n,=10). All groups were administered by gavage once a day. The weight of rats in each group was measured weekly. After 6 weeks of intervention, the liver function and lipid metabolism indexes of the rats were detected, the pathomorphological changes of rat liver tissues were observed with the hematoxylin-eosin (HE) staining, and the expression levels of lipid metabolism-related proteins in rat liver tissues were detected with Western blot method.,Results,2,There was significant steatosis in the liver of rats in the HFD group compared with the condition in the NC group. Compared with the condition in the HFD group, there was significant improvement in lipid droplet vacuoles and hepatic steatosis in rats with high doses of hyperoside; the levels of total cholesterol (TC), triacylglycerol (TG), and low-density lipoprotein (LDL) in liver tissues decreased significantly (,P,<,0.05); the expression levels of lipid synthesis-related proteins including cholesterol regulatory element binding protein 1 (SREBP1), acetyl coenzyme A carboxylase (ACC), fatty acid synthase (FASN), and stearoyl coenzyme A desaturase 1 (SCD1) were downregulated significantly (,P,<,0.05); the expression levels of lipolysis-related proteins including peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT1A) increased significantly (,P,<,0.05); and the expression level of phosphorylated adenylate-activated protein kinase α (p-AMPKα) also observably increased (,P,<,0.05). All the differences were statistically significant.,Conclusion,2,Hyperoside may inhibit hepatic lipid synthesis and promote lipolysis by regulating the AMPK pathway, indicating that it could be a potential drug for the treatment of NAFLD.
非酒精性脂肪性肝病金丝桃苷腺苷酸活化蛋白激酶通路脂质代谢大鼠模型中药研究
non-alcoholic fatty liver disease (NAFLD)hyperosideAMPK signaling pathwaylipid metabolismrat modeltraditional Chinese herbal medicine research
LEE E, KORF H, VIDAL-PUIG A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease[J/OL]. J Hepatol, 2023[2023-03-23]. https://pubmed.ncbi.nlm.nih.gov/36740049/https://pubmed.ncbi.nlm.nih.gov/36740049/.
MUNDI M S, VELAPATI S, PATEL J, et al. Evolution of NAFLD and its management[J]. Nutr Clin Pract, 2020, 35 (1): 72-84.
DIEHL A M, DAY C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis[J]. N Engl J Med, 2017, 377 (21): 2063-2072.
ANTY R, GUAL P. Physiopathologie des stéatoses hépatiques métaboliques[J]. Presse Med, 2019, 48 (12): 1468-1483.
高月,黄文祥,章述军,等. 人参皂苷Rg1对非酒精性脂肪肝HepG2细胞脂质摄取和氧化的影响[J]. 中国实验方剂学杂志,2020, 26(12): 100-106.
周宗涛,邓利明,胡丽君,等. 非酒精性脂肪肝药物治疗靶点及药物研究进展[J]. 中国新药杂志,2020, 29(12): 1363-1374.
PATERNOSTRO R, TRAUNER M. Current treatment of non-alcoholic fatty liver disease[J]. J Intern Med, 2022, 292(2): 190-204.
HAN X, LI W, HUANG D, et al. Polyphenols from hawthorn peels and fleshes differently mitigate dyslipidemia, inflammation and oxidative stress in association with modulation of liver injury in high fructose diet-fed mice[J]. Chem Biol Interact, 2016, 257: 132-140.
XU S, CHEN S, XIA W, et al. Hyperoside: A review of its structure, synthesis, pharmacology, pharmacokinetics and toxicity[J]. Molecules, 2022, 27 (9): 3009.
唐敏,刘耀,夏培元. 金丝桃苷对CCl4诱导的大鼠肝损伤的保护作用研究[J]. 中国药房,2011, 22(7): 582-583.
XING H, FU R, CHENG C, et al. Hyperoside protected against oxidative stress-induced liver injury via the PHLPP2-AKT-GSK-3β signaling pathway in vivo and in vitro[J]. Front Pharmacol, 2020, 11: 1065.
楼陆军,罗洁霞,高云. 山楂的化学成分和药理作用研究概述[J]. 中国药业,2014,23(3):92-94.
CAI Y, LI B, PENG D, et al. Crm1-dependent nuclear export of Bach1 is involveed in the protective effect of hyperoside on oxidative damage in hepatocytes and CCl4-induced acute liver injury[J]. J Inflamm Res, 2021, 14: 551-565.
中华医学会肝脏病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南[J]. 中国肝脏病杂志,2010, 2(4): 43-48.
BESSONE F, RAZORI M V, ROMA M G. Molecular pathways of nonalcoholic fatty liver disease development and progression[J]. Cell Mol Life Sci, 2019, 76 (1): 99-128.
于晓萍,蔡永青,周舒妤,等. 金丝桃苷对溃疡性结肠炎大鼠的保护作用及机制研究[J]. 免疫学杂志,2021, 37(5): 417-424.
潘雨亭,许方圆,于希忠,等. 中药活性成分治疗非酒精性脂肪肝作用靶点的研究进展[J]. 中国中药杂志,2017, 42(6): 1109-1112.
VETRANO E, RINALDI L, MORMONE A, et al. Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and non-viral hepatocarci-noma: pathophysiological mechanisms and new therapeutic strategies[J]. Biomedicines, 2023, 11 (2): 468.
侯天禄,陈天阳,王浩艺,等. 疏肝化痰降脂方减轻非酒精性脂肪性肝病小鼠炎症损伤的作用及机制研究[J]. 上海中医药杂志,2023, 57(2): 59-65.
VURAL H, ARMUTCU F, AKYOL O, et al. The potential pathophysiological role of altered lipid metabolism and electronegative low-density lipoprotein (LDL) in non-alcoholic fatty liver disease and cardiovascular diseases[J]. Clin Chim Acta, 2021, 523: 374-379.
BI S, MA X, WANG Y, et al. Protective effect of ginsenoside Rg1 on oxidative damage induced by hydrogen peroxide in chicken splenic lymphocytes[J]. Oxid Med and Cell Longev, 2019, 2019: 8465030.
JING J, YIN S, LIU Y, et al. Hydroxy selenomethionine alleviates hepatic lipid metabolism disorder of pigs induced by dietary oxidative stress via relieving the endoplasmic reticulum stress[J]. Antioxidants, 2022, 11 (3): 552.
WANG Q, LIU S, ZHAI A, et al. AMPK-Mediated regulation of lipid metabolism by phosphorylation[J]. Biol Pharm Bull, 2018, 41 (7): 985-993.
TIAN Y, FENG H, HAN L, et al. Magnolol alleviates inflammatory responses and lipid accumulation by AMP-activated protein kinase-dependent peroxisome proliferator-activated receptor α activation[J]. Front Immunol, 2018, 9: 147.
BALAKUMAR P, MAHADEVAN N, SAMBATHKUMAR R. A contemporary overview of PPARα/γ dual agonists for the management of diabetic dyslipidemia[J]. Curr Mol Pharmacol, 2019, 12 (3): 195-201.
BOUGARNE N, WEYERS B, DESMET S J, et al. Molecular actions of PPARα in lipid metabolism and inflammation[J]. Endocr Rev, 2018, 39 (5): 760-802.
KIM S J, TANG T, ABBOTT M, et al. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue[J]. Mol Cell Biol, 2016, 36 (14): 1961-1976.
JUNG T W, KIM H C, ABD EL-ATY A M, et al. Protectin DX ameliorates palmitate- or high-fat diet-induced insulin resistance and inflammation through an AMPK-PPARα-dependent pathway in mice[J]. Sci Rep, 2017, 7(1): 1397.
谢佛添,王冬梅,吕翼. AMPK信号通路在酒精性脂肪肝中的研究进展[J]. 中国细胞生物学学报,2020, 42(7): 1221-1228.
YAN Y, ZHOU X E, XU H E, et al. Structure and physiological regulation of AMPK[J]. Int J Mol Sci, 2018, 19(11): 3534.
BOUDABA N, MARION A, HUET C, et al. AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development[J]. EBioMedicine, 2018, 28: 194-209.
KE R, XU Q, LI C, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism[J]. Cell Biol Int, 2018, 42(4): 384-392.
KIM B, WOO M J, PARK C S, et al. Hovenia dulcis extract reduces lipid accumulation in oleic acid-induced steatosis of Hep G2 cells via activation of AMPK and PPARα/CPT-1 pathway and in acute hyperlipidemia mouse model[J]. Phytother Res, 2017, 31(1): 132-139.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构