1.上海中医药大学附属市中医医院内分泌科(上海 200071)
朱烨琳,女,硕士研究生,主要从事肥胖症、糖尿病、甲状腺疾病的临床与基础研究工作
陶枫,博士,主任医师,博士研究生导师; E-mail:taofeng@shutcm.edu.cn
扫 描 看 全 文
朱烨琳,陶枫.基于食欲调控机制探讨中药抑制食欲的研究进展[J].上海中医药杂志,2022,56(12):79-86.
ZHU Yelin,TAO Feng.Research progress on appetite suppression by traditional Chinese herbal medicines based on appetite regulation mechanism[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(12):79-86.
朱烨琳,陶枫.基于食欲调控机制探讨中药抑制食欲的研究进展[J].上海中医药杂志,2022,56(12):79-86. DOI: 10.16305/j.1007-1334.2022.2205082.
ZHU Yelin,TAO Feng.Research progress on appetite suppression by traditional Chinese herbal medicines based on appetite regulation mechanism[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(12):79-86. DOI: 10.16305/j.1007-1334.2022.2205082.
综述中药靶向食欲调控机制抑制食欲的研究进展。研究发现,吴茱萸碱、人参皂苷Rb1、雷公藤红素、柴胡皂苷A等15种中药成分对食欲有明显抑制作用,其机制涉及神经肽Y、5-羟色胺、瘦素、肠道菌群等8个食欲调控环节。
The research progress of appetite suppression by targeted appetite regulation mechanism with traditional Chinese herbal medicines (TCHMs) is reviewed in this article. It is found that 15 components of TCHMs, such as evodiamine, saponin Rb1, celastrol and saikosaponin A, have significant inhibitory effects on appetite, and its mechanism involves 8 appetite regulation links, including neuropeptide Y, 5-hydroxytryptamine, leptin and gut microbiome, etc.
肥胖食欲抑制中药神经肽Y瘦素肠道菌群作用机制
obesityappetite suppressiontraditional Chinese herbal medicineneuropeptide Yleptingut microbiomemechanism of action
HILL J O, WYATT H R, PETERS J C. Energy balance and obesity[J]. Circulation, 2012, 126(1): 126-132.
World Health Organization. Obesity and overweight [EB/OL]. (2021-06-09)[2022-03-06]. https://www. who. int/news-room/fact-sheets/detail/obesity-and-overweighthttps://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
PAN X F, WANG L, PAN A. Epidemiology and determinants of obesity in China[J]. Lancet Diabetes Endocrinol, 2021, 9(6): 373-392.
曲伸,陆灏,宋勇峰. 基于临床的肥胖症多学科诊疗共识(2021年版)[J]. 中华肥胖与代谢病电子杂志,2021, 7(4): 211-226.
TAK Y J, LEE S Y. Long-term efficacy and safety of anti-obesity treatment: Where do we stand?[J]. Curr Obes Rep, 2021, 10(1): 14-30.
BLUNDELL J E, GILLETT A. Control of food intake in the obese[J]. Obes Res, 2001, 9 (Suppl 4): 263S-270S.
HALFORD J C. Pharmacology of appetite suppression: implication for the treatment of obesity[J]. Curr Drug Targets, 2001, 2(4): 353-370.
YANOVSKI S Z, YANOVSKI J A. Progress in pharmacotherapy for obesity[J]. JAMA, 2021, 326(2): 129-130.
LI Z, ZHANG B, WANG N, et al. A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota[J/OL]. Gut, 2022[2022-07-08]. https://pubmed. ncbi. nlm. nih. gov/35803703/https://pubmed.ncbi.nlm.nih.gov/35803703/.
MORTON G J, MEEK T H, SCHWARTZ M W. Neurobiology of food intake in health and disease[J]. Nat Rev Neurosci, 2014, 15(6): 367-378.
FUJITANI M, MIZUSHIGE T, BHATTARAI K, et al. Dynamics of appetite-mediated gene expression in daidzein-fed female rats in the meal-feeding method[J]. Biosci Biotechnol Biochem, 2015, 79(8):1342-1349.
STUBY J, GRAVESTOCK I, WOLFRAM E, et al. Appetite-suppressing and satiety-increasing bioactive phytochemicals: a systematic review[J]. Nutrients, 2019, 11(9): 2238.
YULIANA N D, JAHANGIR M, KORTHOUT H, et al. Comprehensive review on herbal medicine for energy intake suppression[J]. Obes Rev, 2011, 12(7): 499-514.
RAKA F, FARR S, KELLY J, et al. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis[J]. Am J Physiol Endocrinol Metab, 2019, 317(4): E559-E572.
HAN H, YI B, ZHONG R, et al. From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators[J]. Microbiome, 2021, 9(1): 162.
NAKAMURA K, MATSUMOTO M, HIKOSAKA O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus[J]. J Neurosci, 2008, 28(20): 5331-5343.
HIGGS S, SPETTER M S, THOMAS J M, et al. Interactions between metabolic, reward and cognitive processes in appetite control: implications for novel weight management therapies[J]. J Psychopharmacol, 2017, 31(11): 1460-1474.
DE WOUTERS D'OPLINTER A, RASTELLI M, VAN HUL M, et al. Gut microbes participate in food preference alterations during obesity[J]. Gut Microbes, 2021, 13(1): 1959242.
CHEE M J, JrMYERS M G, PRICE C J, et al. Neuropeptide Y suppresses anorexigenic output from the ventromedial nucleus of the hypothalamus[J]. J Neurosci, 2010, 30(9): 3380-3390.
GARDINER J V, KONG W M, WARD H, et al. AAV mediated expression of anti-sense neuropeptide Y cRNA in the arcuate nucleus of rats results in decreased weight gain and food intake[J]. Biochem Biophys Res Commun, 2005, 327(4): 1088-1093.
SUN R, YANG N, KONG B, et al. Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal FXR signaling pathway[J]. Mol Pharmacol, 2017, 91(2): 110-122.
PARK H J, JUNG E Y, SHIM I. Berberine for appetite suppressant and prevention of obesity[J]. Biomed Res Int, 2020 ,2020: 3891806.
WANG T, WANG Y, KONTANI Y, et al. Evodiamine improves diet-induced obesity in a uncoupling protein-1-independent manner: involvement of antiadipogenic mechanism and extracellularly regulated kinase/mitogen-activated protein kinase signaling[J]. Endocrinology, 2008, 149(1): 358-366.
SHI J, YAN J, LEI Q, et al. Intragastric administration of evodiamine suppresses NPY and AgRP gene expression in the hypothalamus and decreases food intake in rats[J]. Brain Res, 2009, 1247: 71-78.
MARCOS P, COVEÑAS R. Neuropeptidergic control of feeding: focus on the galanin family of peptides[J]. Int J Mol Sci, 2021, 22(5): 2544.
KASTIN A J. Handbook of biologically active peptides[M]. 2nd edition. The Netherlands: Elselvie, 2013: 1097-1103.
CASCAO R, FONSECA J E, MOITA L F. Celastrol: a spectrum of treatment opportunities in chronic diseases[J]. Front Med (Lausanne), 2017, 4: 69.
LIU J, LEE J, SALAZAR HERNANDEZ M A, et al. Treatment of obesity with celastrol[J]. Cell, 2015, 161(5): 999-1011.
FANG P, HE B, YU M, et al. Treatment with celastrol protects against obesity through suppression of galanin-induced fat intake and activation of PGC-1α/GLUT4 axis-mediated glucose consumption[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1341-1350.
GOODRICH J K, WATERS J L, POOLE A C, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4): 789-799.
XU S, LYU L, ZHU H, et al. Serum metabolome mediates the antiobesity effect of celastrol-induced gut microbial alterations[J]. J Proteome Res, 2021, 20(10): 4840-4851.
ZHANG X, ZHAO Y, XU J, et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats[J]. Sci Rep, 2015, 5: 14405.
ZHANG X, ZHANG B, ZHANG C, et al. Effect of panax notoginseng saponins and major anti-obesity components on weight loss[J]. Front Pharmacol, 2021, 11: 601751.
SHIN N R, BOSE S, CHOI Y, et al. Anti-obesity effect of fermented panax notoginseng is mediated via modulation of appetite and gut microbial population[J]. Front Pharmacol, 2021, 12: 665881.
FALDUTO M, SMEDILE F, ZHANG M, et al. Anti-obesity effects of chenpi: an artificial gastrointestinal system study[J]. Microb Biotechnol, 2022, 15(3): 874-885.
ZHANG M, ZHU J, ZHANG X, et al. Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice[J]. Food Funct, 2020, 11(3): 2667-2678.
KWON O, KIM K W, KIM M S. Leptin signalling pathways in hypothalamic neurons[J]. Cell Mol Life Sci, 2016, 73(7): 1457-1477.
PAN W W, JrMYERS M G. Leptin and the maintenance of elevated body weight[J]. Nat Rev Neurosci, 2018, 19(2): 95-105.
ETOU H, SAKATA T, FUJIMOTO K, et al. Ginsenoside-Rb1 as a suppressor in central modulation of feeding in the rat[J]. Nihon Yakurigaku Zasshi, 1988, 91(1): 9-15.
WU Y, YU Y, SZABO A, et al. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet[J]. PLoS One, 2014, 9(3): e92618.
KYRIAKOU E, SCHMIDT S, DODD G T, et al. Celastrol promotes weight loss in diet-induced obesity by inhibiting the protein tyrosine phosphatases PTP1B and TCPTP in the hypothalamus[J]. J Med Chem, 2018, 61(24): 11144-11157.
FENG X, GUAN D, AUEN T, et al. IL1R1 is required for celastrol's leptin-sensitization and antiobesity effects[J]. Nat Med, 2019, 25(4): 575-582.
ZHOU B, YUAN Y, SHI L, et al. Creation of an anti-inflammatory, leptin-dependent anti-obesity celastrol mimic with better druggability[J]. Front Pharmacol, 2021, 12: 705252.
HE Z, LIEU L, DONG Y, et al. PERK in POMC neurons connects celastrol with metabolism[J]. JCI Insight, 2021, 6(18): e145306.
LI L, HOU X, XU R, et al. Research review on the pharmacological effects of astragaloside Ⅳ[J]. Fundam Clin Pharmacol, 2017, 31(1): 17-36.
WU H, GAO Y, SHI H L, et al. Astragaloside Ⅳ improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network[J]. Sci Rep, 2016, 6: 30190.
JIANG P, MA D, WANG X, et al. Astragaloside Ⅳ prevents obesity-associated hypertension by improving pro-inflammatory reaction and leptin resistance[J]. Mol Cells, 2018, 41(3): 244-255.
DU Q H, PENG C, ZHANG H. Polydatin: A review of pharmacology and pharmacokinetics[J]. Pharm Biol, 2013, 51(11): 1347-1354.
郑丽,鲍轶,吴加元,等. 虎杖苷对3T3-L1前脂肪细胞增殖与分化的影响及其作用机制[J]. 中华中医药学刊,2017, 35(10): 2521-2525.
ZHENG L, WU J, MO J, et al. Polydatin inhibits adipose tissue inflammation and ameliorates lipid metabolism in high-fat-fed mice[J]. Biomed Res Int, 2019, 2019: 7196535.
DRUCKER D J. Mechanisms of action and therapeutic application of glucagon-like peptide-1[J]. Cell Metab, 2018, 27(4): 740-756.
JENSTERLE M, RIZZO M, JANEZ A. Glucagon-like peptide 1 and taste perception: from molecular mechanisms to potential clinical implications[J]. Int J Mol Sci, 2021, 22(2): 902.
KIM K S, JUNG YANG H, LEE I S, et al. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice[J]. Sci Rep, 2015,5: 18325.
YUE X, LIANG J, GU F, et al. Berberine activates bitter taste responses of enteroendocrine STC-1 cells[J]. Mol Cell Biochem, 2018, 447(1-2): 21-32.
RUNTAO G, GUO D, JIANGBO Y, et al. Oxymatrine, the main alkaloid component of Sophora roots, protects heart against arrhythmias in rats[J]. Planta Med, 2011, 77(3): 226-230.
GUO C, ZHANG C, LI L, et al. Hypoglycemic and hypolipidemic effects of oxymatrine in high-fat diet and streptozotocin-induced diabetic rats[J]. Phytomedicine, 2014, 21(6): 807-814.
LUO S, GILL H, FELTIS B, et al. The effects of a weight-loss herbal formula RCM-107 and its eight individual ingredients on glucagon-like peptide-1 secretion-an in vitro and in silico study[J]. Int J Mol Sci, 2020, 21(8): 2854.
AKALU Y, MOLLA M D, DESSIE G, et al. Physiological effect of ghrelin on body systems[J]. Int J Endocrinol, 2020,2020: 1385138.
NAKAZATO M, MURAKAMI N, DATE Y, et al. A role for ghrelin in the central regulation of feeding[J]. Nature, 2001, 409(6817): 194-198.
SUBASH BABU P, PRABUSEENIVASAN S, IGNACIMUTHU S. Cinnamaldehyde--a potential antidiabetic agent[J]. Phytomedicine, 2007, 14(1): 15-22.
CAMACHO S, MICHLIG S, DE SENARCLENS-BEZENÇON C, et al. Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying[J]. Sci Rep, 2015,5: 7919.
TUNG N H, NAKAJIMA K, UTO T, et al. Bioactive triterpenes from the root of salvia miltiorrhiza Bunge[J]. Phytother Res, 2017, 31(9): 1457-1460.
VUCETIC Z, REYES T M. Central dopaminergic circuitry controlling food intake and reward: Implications for the regulation of obesity[J]. Wiley Interdiscip Rev Syst Biol Med, 2010, 2(5): 577-593.
MEGUID M M, FETISSOV S O, VARMA M, et al. Hypothalamic dopamine and serotonin in the regulation of food intake[J]. Nutrition, 2000, 16(10): 843-857.
NENCINI P, FRAIOLI S, PERRELLA D. Tolerance does not develop to the suppressant effects of (-)-norpseudoephedrine on ingestive behavior in the rat[J]. Pharmacol Biochem Behav, 1996, 53(2): 297-301.
HAUNER H, HASTREITER L, WERDIER D, et al. Efficacy and safety of cathine (Nor-Pseudoephedrine) in the treatment of obesity: a randomized dose-finding study[J]. Obes Facts, 2017, 10(4): 407-419.
KALYANASUNDAR B, PEREZ C I, ARROYO B, et al. The appetite suppressant D-norpseudoephedrine (Cathine) acts via D1/D2-Like dopamine receptors in the nucleus accumbens shell[J]. Front Neurosci, 2020,14: 572328.
NONOGAKI K. The regulatory role of the central and peripheral serotonin network on feeding signals in metabolic diseases[J]. Int J Mol Sci, 2022, 23(3): 1600.
NAKATANI Y, SATO-SUZUKI I, TSUJINO N. et al. Augmented brain 5-HT crosses the blood-brain barrier through the 5-HT transporter in rat[J]. Eur J Neurosci, 2008, 27(9): 2466-2472.
SINGH S K, SRIVASTAV S, CASTELLANI R J, et al. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders[J]. Neurotherapeutics, 2019, 16(3): 666-674.
BANIN R M, DE ANDRADE I S, CERUTTI S M, et al. Ginkgo biloba Extract (GbE) stimulates the hypothalamic serotonergic system and attenuates obesity in ovariectomized rats[J]. Front Pharmacol, 2017,8: 605.
MACHADO M M F, PEREIRA J P, HIRATA B K S, et al. A single dose of Ginkgo biloba Extract induces gene expression of hypothalamic anorexigenic effectors in male rats[J]. Brain Sci, 2021, 11(12): 1602.
ASHOUR M L, WINK M. Genus bupleurum: A review of its phytochemistry, pharmacology and modes of action[J]. J Pharm Pharmacol, 2011, 63(3): 305-321.
SUN C L, GENG C A, HUANG X Y, et al. Bioassay-guided isolation of saikosaponins with agonistic activity on 5-hydroxytryptamine 2C receptor from Bupleurum chinense and their potential use for the treatment of obesity[J]. Chin J Nat Med, 2017, 15(6): 467-473.
MACCIONI P, FARA F, GESSA G L, et al. Reducing effect of saikosaponin A, an active ingredient of bupleurum falcatum, on intake of highly palatable food in a rat model of overeating[J]. Front Psychiatry, 2018,9: 369.
杨春壮,郭艳芹,马英,等. 四味降脂汤对肥胖大鼠血清神经肽Y含量和下丘脑神经肽Y表达的影响[J]. 中国实验方剂学杂志,2009, 15(11): 61-62.
喻松仁,舒晴,白洋,等. 温胆汤对肥胖痰湿证大鼠相关炎症因子及JAK2/STAT3通路关键分子STAT3表达的影响[J]. 中国实验方剂学杂志,2019,25(6):39-44.
LI J, XU J, HOU R, et al. Qing-Hua granule induces GLP-1 secretion via bitter taste receptor in db/db mice[J]. Biomed Pharmacother, 2017,89: 10-17.
TREVELLINE B K, KOHL K D. The gut microbiome influences host diet selection behavior[J]. Proc Natl Acad Sci U S A, 2022, 119(17): e2117537119.
TRAN N, PHAM B, LE L. Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery[J]. Biology (Basel), 2020, 9(9): 252.
LI F S, WENG J K. Demystifying traditional herbal medicine with modern approach[J]. Nat Plants, 2017,3: 17109.
PERKINS C, SIDDIQUI S, PURI M, et al. Biotechnological applications of microbial bioconversions[J]. Crit Rev Biotechnol, 2016, 36(6): 1050-1065.
0
浏览量
435
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构