1.上海中医药大学交叉科学研究院(上海 201203)
2.上海中医药大学科技实验中心(上海 201203)
3.上海市虹口区江湾医院急诊科(上海 200433)
4.同济大学附属上海市肺科医院肿瘤科(上海 200433)
常青祺,女,硕士研究生,主要从事中药干预肿瘤增殖转移的机制研究工作
章丹丹,研究员,博士研究生导师; E-mail:izhangdd@126.com
扫 描 看 全 文
常青祺,陈龙,袁春露等.知母皂苷AⅢ抑制小鼠脑胶质瘤细胞GL261增殖的蛋白质组学研究[J].上海中医药杂志,2022,56(08):71-78.
CHANG Qingqi,CHEN Long,YUAN Chunlu,et al.Proteomics study of timosaponin AⅢ inhibiting the proliferation on murine glioblastoma GL261[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(08):71-78.
常青祺,陈龙,袁春露等.知母皂苷AⅢ抑制小鼠脑胶质瘤细胞GL261增殖的蛋白质组学研究[J].上海中医药杂志,2022,56(08):71-78. DOI: 10.16305/j.1007-1334.2022.2112092.
CHANG Qingqi,CHEN Long,YUAN Chunlu,et al.Proteomics study of timosaponin AⅢ inhibiting the proliferation on murine glioblastoma GL261[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(08):71-78. DOI: 10.16305/j.1007-1334.2022.2112092.
目的,2,利用蛋白质组学技术考察知母皂苷AⅢ抑制小鼠脑胶质瘤细胞GL261(简称“GL261细胞”)增殖的分子机制。,方法,2,①将GL261细胞分为空白对照组(知母皂苷AⅢ 0 μmol/L)和不同剂量知母皂苷AⅢ给药组(1、2、4、6、8、10 μmol/L),同时设置溶媒对照组[0.05%二甲基亚砜(DMSO)]和阳性药物组(紫杉醇,1 μmol/L),按照分组分别将药液加入含10%胎牛血清(FBS)的达尔伯克改良伊格尔(DMEM)培养基中,混匀依次加入96孔板中,孵育72 h,采用四甲基偶氮唑盐微量酶反应比色法(MTT法)检测各组细胞存活率。②将GL261细胞分为空白对照组、知母皂苷AⅢ给药组(3.5、7 μmol/L),按照分组分别将药液加入含10%FBS的DMEM中,混匀后依次加入96孔板中,孵育24 h,采用平板克隆法测定细胞的克隆形成,流式细胞术检测细胞凋亡情况;采用蛋白质组学技术分析潜在的靶标蛋白和相关的信号通路,并使用蛋白免疫印迹法对关键蛋白进行验证。,结果,2,与空白对照组比较,知母皂苷AⅢ呈剂量依赖性显著抑制GL261细胞活力和克隆形成,同时诱导GL261细胞凋亡(,P,<,0.05)。蛋白质组学结果显示,知母皂苷AⅢ处理GL261细胞后,共有16个差异蛋白,其中5个蛋白上调,11个蛋白下调。基因本体(GO)数据库分析显示,主要生物进程、细胞组成和分子功能集中在增殖调节、生长负调控、细胞器、蛋白质结合、蛋白质同源二聚体活性等。京都基因与基因组百科全书(KEGG)数据库分析显示,主要通路富集在黏蛋白型O-聚糖生物合成、非小细胞肺癌、细菌侵袭表皮细胞、破骨细胞分化、FoxO信号通路、Wnt信号通路、紧密连接、细胞黏附分子、癌症中的蛋白聚糖、Ras信号通路。蛋白质免疫印迹法的结果显示,与空白对照组比较,知母皂苷AⅢ呈剂量依赖性抑制GL261细胞中CD276蛋白及Wnt信号通路中关键蛋白β-连环蛋白(β-catenin)、原癌基因蛋白(c-Myc)、细胞周期蛋白D1(CyclinD1)的表达(,P,<,0.05)。,结论,2,知母皂苷AⅢ能抑制GL261细胞体外增殖、克隆形成,并诱导GL261细胞凋亡,其机制可能是通过抑制CD276蛋白表达,调控Wnt信号通路,从而发挥其抑制作用。
Objective,2,The molecular mechanism of timosaponin AⅢinhibiting the proliferation on murine glioblastoma GL261(GL261 cell) was investiated by proteomics.,Methods,2,① GL261 cells were divided into blank control group (timosaponin AⅢ 0 μmol/L) and different dose groups of timosaponin AⅢ (1, 2, 4, 6, 8, 10 μmol/L). And solvent control group [0.05% dimethyl sulfoxide (DMSO)] and positive drug group [taxol(TAX),1 μmol/L] were set up. According to the grouping, the solution was added to DMEM containing 10% fetal bovine serum (FBS), and then mixed into 96-well plate. After incubation for 72 h, the cell survival rate of each group was detected by MTT method. ② GL261 cells were divided into blank control group and timosaponin AⅢ group (3.5, 7 μ mol/L). According to the grouping, the solution was added to DMEM containing 10%FBS, mixed and then added to 96-well plate for 24 h. The colony formation of the cells was determined by plate cloning, apoptosis detected by flow cytometry, and the potential target proteins and related signal pathways analyzed by proteomics. Western blot was used to verify the key proteins.,Results,2,Compared with the blank control group, timosaponin AⅢ significantly inhibited the viability and colony formation of GL261 cells and induced apoptosis of GL261 cells in a dose-dependent manner. Proteomic results showed that there were 16 differential proteins in GL261 cells treated with timosaponin AⅢ, of which 5 proteins were up-regulated and 11 proteins were down-regulated. Gene ontology (GO) analysis showed that the main biological processes, cell composition and molecular functions focused on proliferation regulation, negative growth regulation, organelles, protein binding, protein homodimer activity and so on. Kyoto Encyclopedia of Gene and Genome (KEGG) analysis showed that the main pathways were concentrated in mucin O-glycan biosynthesis, non-small cell lung cancer, bacterial invasion of epidermal cells, osteoclast differentiation, FoxO signal pathway, Wnt signal pathway, tight junction, cell adhesion molecules, proteoglycan in cancer and Ras signal pathway. The results of Western blot showed that compared with the blank control group, timosaponin AⅢ inhibited the expressions of CD276 protein and the key proteins in Wnt signaling pathway, such as β-catenin, proto-oncogene (c-Myc) and cyclin D1 (CyclinD1) in GL261 cells in a dose-dependent manner(,P,<,0.05).,Conclusions,2,Timosaponin AⅢ can inhibit the proliferation and colony formation of GL261 cells ,in vitro, and induce apoptosis of GL261 cells. The mechanism may be that it inhibits the expression of CD276 protein and regulates the Wnt signal pathway.
脑胶质瘤知母皂苷AⅢ蛋白质组学CD276Wnt信号通路中药研究
glioblastomatimosaponin AⅢproteomicsCD276Wnt signal pathwayresearch of traditional Chinese herbal medicine
BUSH N A, CHANG S M, BERGER M S. Current and future strategies for treatment of glioma[J]. Neurosurg Rev, 2017, 40(1): 1-14.
LOUIS D N, OHGAKI H, WIESTLER O D, et al. The 2007 WHO classification of tumours of the central nervous system[J]. Acta Neuropathol, 2007, 114(2): 97-109.
WEN P Y, KESARI S. Malignant gliomas in adults[J]. N Engl J Med, 2008, 359(5): 492-507.
CUI X, MORALES R T, QIAN W, et al. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis[J]. Biomaterials, 2018(161): 164-178.
JI K Y, KIM K M, KIM Y H, et al. The enhancing immune response and anti-inflammatory effects of Anemarrhena asphodeloides extract in RAW 264.7 cells[J/OL]. Phytomedicine, 2019[2021-12-15].https://www.sciencedirect.com/science/article/pii/S0944711318306056?via%3Dihubhttps://www.sciencedirect.com/science/article/pii/S0944711318306056?via%3Dihub.
朱建新,李旺. 知母的研究进展[J]. 河北北方学院学报(自然科学版),2018, 34(2): 56-60.
钟可,王文全,靳凤云,等. HPLC-ELSD法同时测定河北产道地药材不同物候期知母中知母皂苷AⅢ和知母皂苷BⅡ的含量[J]. 中华中医药杂志,2013, 28(6): 1710-1713.
尤杰,孙兆林,季宇彬,等. 知母皂苷AⅢ药理活性及机制研究进展[J]. 中国医药导报,2012, 9(3): 11-13.
LIN Y, ZHAO W R, SHI W T, et al. Pharmacological activity, pharmacokinetics, and toxicity of timosaponin AⅢ, a natural product isolated from anemarrhena asphodeloides bunge: A review[J]. Front Pharmacol, 2020(11): 764.
LIU J, DENG X, SUN X, et al. Inhibition of autophagy enhances timosaponin AⅢ-induced lung cancer cell apoptosis and anti-tumor effect in vitro and in vivo[J/OL]. Life Sci, 2020 [2021-12-15].https://www.sciencedirect.com/science/article/abs/pii/S0024320520307906?via%3Dihubhttps://www.sciencedirect.com/science/article/abs/pii/S0024320520307906?via%3Dihub.
王英超,党源,李晓艳,等. 蛋白质组学及其技术发展[J]. 生物技术通讯,2010, 21(1): 139-144.
尹稳,伏旭,李平. 蛋白质组学的应用研究进展[J]. 生物技术通报,2014, 30(1): 32-38.
PENG L, CANTOR D I, HUANG C, et al. Tissue and plasma proteomics for early stage cancer detection[J]. Mol Omics, 2018,149(6): 405-423.
DOLECEK T A, PROPP J M, STROUP N E, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009[J]. Neuro Oncol, 2012,14(Suppl 5): v1-v49.
KINDY M S, YU J, ZHU H, et al. A therapeutic cancer vaccine against GL261 murine glioma[J]. J Transl Med, 2016, 14: 1.
CHEN Z, FENG X, HERTING C J, et al. Cellular and molecular identity of tumor-associated macrophages in glioblastoma[J]. Cancer Res, 2017, 77(9): 2266-2278.
GENOUD V, MARINARI E, NIKOLAEV S I, et al. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models[J/OL]. Oncoimmunology, 2018[2021-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279422/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279422/.
KIM Y, KIM K H, LEE I S, et al. Apoptosis and G2/M cell cycle arrest induced by a timosaponin A3 from Anemarrhena asphodeloides Bunge on AsPC-1 pancreatic cancer cells[J]. Phytomedicine, 2019(56): 48-56.
WANG H Q, GONG X M, LAN F, et al. Biopharmaceutics and pharmacokinetics of timosaponin AⅢ by a sensitive HPLC-MS/MS method: low bioavailability resulting from poor permeability and solubility[J]. Curr Pharm Biotechnol, 2021, 22(5): 672-681.
李德顺,袁丽,刘奇,等. 百合知母汤对抑郁症大鼠环磷酸腺苷信号通路的影响[J]. 武汉大学学报(医学版),2015, 36(6): 867-871.
刘职瑞. 基于色谱-质谱联用的知母总皂苷抗阿尔茨海默症的药效筛选研究[D]. 上海:第二军医大学, 2013.
TSAI C H, YANG C W, WANG J Y, et al. Timosaponin AⅢ suppresses hepatocyte growth factor-induced invasive activity through sustained ERK activation in breast cancer mda-mb-231 cells[J/OL]. Evid Based Complement Alternat Med, 2013[2021-12-15]. https://www.hindawi.com/journals/ecam/2013/421051/https://www.hindawi.com/journals/ecam/2013/421051/.
KING F W, FONG S, GRIFFIN C, et al. Timosaponin AⅢ is preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress[J/OL]. PLoS One, 2009[2021-12-15]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747272/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747272/.
LEE B, JUNG K, KIM D H. Timosaponin AⅢ, a saponin isolated from Anemarrhena asphodeloides, ameliorates learning and memory deficits in mice[J]. Pharmacol Biochem Behav, 2009, 93(2): 121-127.
陈燕芳,卞卡. 知母皂苷AⅢ药理活性及机制研究进展[J]. 上海中医药杂志,2016, 50(11): 102-104.
JUNG O, LEE J, LEE Y J, et al. Timosaponin AⅢ inhibits migration and invasion of A549 human non-small-cell lung cancer cells via attenuations of MMP-2 and MMP-9 by inhibitions of ERK1/2, Src/FAK and beta-catenin signaling pathways[J]. Bioorg Med Chem Lett, 2016, 26(16): 3963-3967.
LEE S Y. Ginsenoside Rg1 drives stimulations of timosaponin AⅢ-induced anticancer effects in human osteosarcoma cells[J/OL]. Evid Based Complement Alternat Med, 2020[2021-12-15]. https://www.hindawi.com/journals/ecam/2020/8980124/https://www.hindawi.com/journals/ecam/2020/8980124/.
KIM K M, IM A R, KIM S H, et al. Timosaponin AⅢ inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis[J]. Cancer Sci, 2016, 107(2): 181-188.
KIM Y, KIM K H, LEE I S, et al. Apoptosis and G2/M cell cycle arrest induced by a timosaponin A3 from Anemarrhena asphodeloides Bunge on AsPC-1 pancreatic cancer cells[J]. Phytomedicine, 2019(56): 48-56.
辛萍,匡海学,李晓亮,等. 蛋白质组学技术及其在中药作用机制研究中的应用[J]. 中国中药杂志,2018, 43(5): 904-912.
TAO M, LIU T, YOU Q, et al. p62 as a therapeutic target for tumor[J/OL]. Eur J Med Chem, 2020[2021-12-15].https://www.sciencedirect.com/science/article/abs/pii/S0223523420301987?via%3Dihubhttps://www.sciencedirect.com/science/article/abs/pii/S0223523420301987?via%3Dihub.
PICARDA E, OHAEGBULAM K C, ZANG X. Molecular pathways: targeting B7-H3 (CD276)for human cancer immunotherapy[J]. Clin Cancer Res, 2016, 22(14): 3425-3431.
王茗典,张大昕. B7-H3在恶性肿瘤中的研究进展[J]. 现代肿瘤医学,2018, 26(14): 2305-2308.
PICARDA E, OHAEGBULAM K C, ZANG X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy[J]. Clin Cancer Res, 2016, 22(14): 3425-3431.
YANG S, WEI W, ZHAO Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy[J]. Int J Biol Sci, 2020, 16(11): 1767-1773.
LI F, CHEN H, WANG D. Silencing of CD276 suppresses lung cancer progression by regulating integrin signaling[J]. J Thorac Dis, 2020, 12(5): 2137-2145.
DIGREGORIO M, COPPIETERS N, LOMBARD A, et al. The expression of B7-H3 isoforms in newly diagnosed glioblastoma and recurrence and their functional role[J]. Acta Neuropathol Commun, 2021, 9(1): 59.
郭张超. B7-H3通过JAK2/STAT3信号通路调节胶质瘤的生长和细胞侵袭[D]. 泸州:西南医科大学,2020.
HE S, TANG S. WNT/β-catenin signaling in the development of liver cancers[J/OL]. Biomed Pharmacother,2020[2021-12-15].https://www.sciencedirect.com/science/article/pii/S075333222031043X?via%3Dihubhttps://www.sciencedirect.com/science/article/pii/S075333222031043X?via%3Dihub.
TRAUTMANN M, SIEVERS E, ARETZ S, et al. SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma[J]. Oncogene, 2014, 33(42): 5006-5016.
ZHENG B Y, GAO W Y, HUANG X Y, et al. HBx promotes the proliferative ability of HL7702 cells via the COX2/Wnt/betacatenin pathway[J]. Mol Med Rep, 2018, 17(6): 8432-8438.
MOON R T, KOHN A D, DE FERRARI G V, et al. WNT and β-catenin signalling: diseases and therapies[J]. Nat Rev Genet, 2004, 5(9): 691-701.
0
浏览量
352
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构