1.上海中医药大学光华临床医学院(上海 201203)
2.上海中医药大学附属光华医院风湿科(上海 200052)
姜平,男,博士研究生,主要从事类风湿关节炎的临床和实验研究工作
何东仪,主任医师,教授,博士研究生导师; E-mail: hedongyi1967@shutcm.edu.cn
扫 描 看 全 文
姜平,戴洁梅,魏凯,等.基于网络药理学及分子对接技术探究复方雷公藤逐痛颗粒干预类风湿关节炎的作用机制[J].上海中医药杂志,2022,56(9):21-31.
JIANG Ping,DAI Jiemei,WEI Kai,et al.Study on the mechanism of Compound Tripterygium Wilfordii Painkiller Granules on rheumatoid arthritis based on network pharmacology and molecular docking[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(9):21-31.
姜平,戴洁梅,魏凯,等.基于网络药理学及分子对接技术探究复方雷公藤逐痛颗粒干预类风湿关节炎的作用机制[J].上海中医药杂志,2022,56(9):21-31. DOI: 10.16305/j.1007-1334.2022.2112070.
JIANG Ping,DAI Jiemei,WEI Kai,et al.Study on the mechanism of Compound Tripterygium Wilfordii Painkiller Granules on rheumatoid arthritis based on network pharmacology and molecular docking[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(9):21-31. DOI: 10.16305/j.1007-1334.2022.2112070.
目的,2,运用网络药理学及分子对接技术探究复方雷公藤逐痛颗粒(CTWPGs)干预类风湿关节炎(RA)的分子作用机制。,方法,2,通过检索相关文献,并运用中药系统药理学数据库与分析平台(TCMSP)、中医药百科全书数据库(ETCM)、分子机制生物信息学分析工具(BATMAN)等获取CTWPGs的主要活性成分和作用靶点,利用在线人类孟德尔遗传数据库(OMIM)、药物银行(Drug Bank)、基因卡(Gene Cards)、治疗靶点数据库(TTD)等获取RA相关靶点;药物与疾病靶点映射后获取交集靶点,以String数据库对交集靶点构建蛋白互相作用网络,并分析、筛选核心靶点;通过注释、可视化、集成发现数据库(DAVID)对核心靶点进行基因本体论(GO)功能富集分析,以及京都基因和基因组百科全书(KEGG)信号通路分析,采用Cytoscape3.6.0构建CTWPGs“活性成分-靶点-信号通路”的可视化网络。,结果,2,通过筛选获得CTWPGs干预RA的作用成分共47种,得到作用于RA的核心靶点34个。GO功能富集分析共得到357个条目(,P,<,0.05),其中生物过程条目299个,细胞组成条目21个,分子功能条目37个;KEGG通路分析富集得到107条信号通路(,P,<,0.05),主要包括肿瘤坏死因子(TNF)信号通路、Toll样受体信号通路和丝裂原活化蛋白激酶(MAPK)信号通路等。最终“活性成分-靶点-信号通路”蛋白互作网络分析结果显示,CTWPGs活性成分中发挥干预RA作用的关键成分为槲皮素、木犀草素、雷公藤甲素等;关键靶点为环加氧酶2(PTGS2)、肉瘤病毒17癌基因同源物(JUN)、丝氨酸/苏氨酸激酶1(AKT1)、丝裂原活化蛋白激酶1(MAPK1)、网状内皮增生症病毒癌基因同源物A(RELA)、丝裂原活化蛋白激酶14(MAPK14)、丝裂原活化蛋白激酶3(MAPK3)、TNF等。分子对接结果显示,木犀草素与MAPK3、PTGS2,雷公藤甲素与MAPK3、TNF,山柰酚与MAPK14,银杏内酯A30与MAPK3、TNF、AKT1、PTGS2,黄芩素与MAPK3之间具有较好的对接活性。,结论,2,基于网络药理学研究表明,CTWPGs可以通过多成分、多靶点、多通路发挥对RA的干预作用,具有一定的临床应用价值。
Objective,2,The study used a network pharmacology approach and molecular docking technology to identify the pharmacological mechanisms of Compound Tripterygium Wilfordii Painkiller Granules( CTWPGs )treating rheumatoid arthritis (RA).,Methods,2,The main active ingredients and targets of CTWPGs were obtained by using TCMSP, ETCM and BATMAN. RA-related targets were obtained from OMIM, Drug Bank, Gene Cards and TTD databases. Intersection targets were acquired after drug and disease target mapping. Then the protein-protein interaction network was constructed by String database to analyze the interactions and screened the core genes by topology. Finally, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the core genes were carried out through Database for Annotation, Visualization, and Integrated Discovery. The visual network of “active ingredients-targets-signaling pathways” was constructed by Cytoscape3.6.0 software.,Results,2,A total of 47 ingredients and 34 core genes were obtained. GO enrichment analysis obtained 357 items (,P,<,0.05), including 299 Biological Processes, 21 Cellular Components and 37 Molecular Functions (,P,<,0.05). And results of KEGG enrichment analysis showed 107 signaling pathways (,P,<,0.05), including TNF signaling pathway, Toll-like receptor signaling pathway, and MAPK signaling pathway. Finally, the results suggested that the key active ingredients of CTWPGs included quercetin, luteolin, and triptolide. And core genes were PTGS2, JUN, AKT1, MAPK1, RELA, MAPK14, MAPK3 and TNF. The molecular mocking showed that luteolin and MAPK3, PTGS2, triptolide and MAPK3, TNF, kaempferol and MAPK14, GA30 and MAPK3, TNF, AKT1, PTGS2, baicalein and MAPK3 had good docking activity.,Conclusion,2,Network pharmacological studies showed that CTWPGs could play an intervention role in RA through multi-ingredients, multi-targets and multi-pathways, which had certain clinical application value.
复方雷公藤逐痛颗粒类风湿关节炎网络药理学分子对接
Compound Tripterygium Wilfordii Painkiller Granulesrheumatoid arthritisnetwork pharmacologymolecular docking
KAUR S, BANSAL Y, KUMAR R, et al. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors[J]. Bioorg Med Chem, 2020, 28(5): 115327.
LOPEZ-PEDRERA C, BARBARROJA N, PATIÑO-TRIVES A M, et al. Effects of biological therapies on molecular features of rheumatoid arthritis[J]. Int J Mol Sci, 2020, 21(23): 9067.
SMOLEN J S, ALETAHA D, BARTON A, et al. Rheumatoid arthritis[J]. Nat Rev Dis Primer, 2018, 4: 18001.
ABBASI M, MOUSAVI M J, JAMALZEHI S, et al. Strategies toward rheumatoid arthritis therapy; the old and the new[J]. J Cell Physiol, 2019, 234(7): 10018-10031.
CHEN S R, DAI Y, ZHAO J, et al. A mechanistic overview of Triptolide and Celastrol, natural products from Tripterygium wilfordii Hook F[J]. Front Pharmacol, 2018, 9: 104.
ZHOU Y Z, ZHAO L D, CHEN H, et al. Comparison of the impact of Tripterygium wilfordii Hook F and Methotrexate treatment on radiological progression in active rheumatoid arthritis: 2-year follow up of a randomized, non-blinded, controlled study[J]. Arthritis Res Ther, 2018, 20(1): 70.
戴洁梅,程鹏,何东仪,等. 复方雷公藤逐痛颗粒辅助治疗痰瘀互结型类风湿关节炎的临床效果观察[J]. 现代生物医学进展,2019,19(4):743-746.
YUAN H, MA Q, CUI H, et al. How can synergism of traditional medicines benefit from network pharmacology?[J]. Mol Basel Switz, 2017, 22(7): 1135.
RU J, LI P, WANG J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminformatics, 2014(6): 13.
KIM S, CHEN J, CHENG T, et al. PubChem 2019 update: improved access to chemical data[J]. Nucleic Acids Res, 2019, 47(D1): D1102-D1109.
DAINA A, MICHIELIN O, ZOETE V. Swiss target prediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47(W1): W357-W364.
UNIPROT C T. UniProt: the universal protein knowledgebase[J]. Nucleic Acids Res, 2018, 46(5): 2699.
STELZER G, ROSEN N, PLASCHKES I, et al. The Gene Cards Suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinforma, 2016, 54: 30-33.
AMBERGER J S, BOCCHINI C A, SCHIETTECATTE F, et al. Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015, 43: 789-798.
WANG Y, ZHANG S, LI F, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics[J]. Nucleic Acids Res, 2020, 48(D1): D1031-D1041.
SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1): D362-D368.
HUANG D W, SHERMAN B T, LEMPICKI R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44-57.
BERGER S I, IYENGAR R. Network analyses in systems pharmacology[J]. Bioinforma Oxf Engl, 2009, 25(19): 2466-2472.
PIOVEZANA B G D, SILVA B T, COLOMBO M, et al. Rheumatoid arthritis induces enteric neurodegeneration and jejunal inflammation, and quercetin promotes neuroprotective and anti-inflammatory actions[J]. Life Sci, 2019, 238: 116956.
KAWAGUCHI K, KANEKO M, MIYAKE R,et al. Potent inhibitory effects of quercetin on inflammatory responses of collagen-induced arthritis in mice[J]. Endocr Metab Immune Disord Drug Targets, 2019, 19(3): 308-315.
ZHAO J, CHEN B, PENG X, et al. Quercetin suppresses migration and invasion by targeting miR-146a/GATA6 axis in fibroblast-like synoviocytes of rheumatoid arthritis[J]. Immunopharmacol Immuno-toxicol, 2020, 42(3): 221-227.
IMPELLIZZERI D, ESPOSITO E, DI PAOLA R, et al. Erratum to: palmitoylethanolamide and luteolin ameliorate development of arthritis caused by injection of collagen type Ⅱ in mice[J]. Arthritis Res Ther, 2016, 18(1): 101.
AZIZ N, KIM M Y, CHO J Y. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies[J]. J Ethnophar-macol, 2018, 225: 342-358.
YUAN K, LI X, LU Q, et al. Application and mechanisms of triptolide in the treatment of inflammatory diseases-a review[J]. Front Pharmacol, 2019, 10: 1469.
YANG Y, YE Y, QIU Q, et al. Triptolide inhibits the migration and invasion of rheumatoid fibroblast-like synoviocytes by blocking the activation of the JNK MAPK pathway[J]. Int Immunopharmacol, 2016, 41: 8-16.
DAI S, YIN K, YAO X, et al. Inhibition of interleukin-13 gene expression by triptolide in activated T lymphocytes[J]. Respirol Carlton Vic, 2013, 18(8): 1249-1255.
LIU C, ZHANG Y, KONG X, et al. Triptolide prevents bone destruction in the collagen-induced arthritis model of rheumatoid arthritis by targeting RANKL/RANK/OPG signal pathway[J]. Evid-Based Complement Altern Med ECAM, 2013, 2013: 626038.
WANG S, ZUO S, LIU Z, et al. Study on the efficacy and mechanism of triptolide on treating TNF transgenic mice with rheumatoid arthritis[J]. Biomed Pharmacother, 2018, 106: 813-820.
SONG X, ZHANG Y, DAI E, et al. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking[J]. Int Immunopharmacol, 2020, 80: 106179.
DINDA B, DINDA S, DAS SHARMA S, et al. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders[J]. Eur J Med Chem, 2017, 131: 68-80.
YAN W J, MA X C, GAO X Y, et al. Latest research progress in the correlation between baicalein and breast cancer invasion and metastasis[J]. Mol Clin Oncol, 2016, 4(4): 472-476.
XU J, LIU J, YUE G, et al. Therapeutic effect of the natural compounds baicalein and baicalin on autoimmune diseases[J]. Mol Med Rep, 2018, 18(1): 1149-1154.
YANG X, YANG J, ZOU H. Baicalin inhibits IL-17-mediated joint inflammation in murine adjuvant-induced arthritis[J]. Clin Dev Immunol, 2013, 2013: 268065.
WANG J, ZHAO Q. Kaempferitrin inhibits proliferation, induces apoptosis, and ameliorates inflammation in human rheumatoid arthritis fibroblast-like synoviocytes[J]. Phytother Res PTR, 2019, 33(6): 1726-1735.
LEE A, QIAO Y, GRIGORIEV G, et al. Tumor necrosis factor α induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts[J]. Arthritis Rheum, 2013, 65(4): 928-938.
MCINNES I B, BUCKLEY C D, ISAACS J D. Cytokines in rheumatoid arthritis-shaping the immunological landscape[J]. Nat Rev Rheumatol, 2016, 12(1): 63-68.
ZHAO B. Intrinsic restriction of tnf-mediated inflammatory osteoclastogenesis and bone resorption[J]. Front Endocrinol, 2020(11): 583561.
VAN SCHOUWENBURG P A, RISPENS T, WOLBINK G J. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis[J]. Nat Rev Rheumatol, 2013, 9(3): 164-172.
SUZUKI M, HASHIZUME M, YOSHIDA H, et al. IL-6 and IL-1 synergistically enhanced the production of MMPs from synovial cells by up-regulating IL-6 production and IL-1 receptor I expression[J]. Cytokine, 2010, 51(2): 178-183.
SMOLEN J S, BEAULIEU A, RUBBERT-ROTH A, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial[J]. Lancet Lond Engl, 2008, 371(9617): 987-997.
JIMI E, FEI H, NAKATOMI C. NF-κB signaling regulates physiological and pathological chondrogenesis[J]. Int J Mol Sci, 2019, 20(24): 6275.
JIANG C, XU M, KUANG X, et al. Treponema pallidum flagellins stimulate MMP-9 and MMP-13 expression via TLR5 and MAPK/NF-κB signaling pathways in human epidermal keratinocytes[J]. Exp Cell Res, 2017, 361(1): 46-55.
LEE S Y, PARK S H, LEE S W, et al. Synoviocyte apoptosis may differentiate responder and non-responder patients to methotrexate treatment in rheumatoid arthritis[J]. Arch Pharm Res, 2014, 37(10): 1286-1294.
LI C, PAN J, XU C, et al. A preliminary inquiry into the potential mechanism of Huang-Lian-Jie-Du Decoction in treating rheumatoid arthritis via network pharmacology and molecular docking[J]. Front Cell Dev Biol, 2022, 9: 740266.
POPE J E, STEVENS A, HOWSON W, et al. The development of rheumatoid arthritis after recombinant hepatitis B vaccination[J]. J Rheumatol, 1998, 25(9): 1687-1693.
NAKAMURA J, NAGASHIMA T, NAGATANI K, et al. Reactivation of hepatitis B virus in rheumatoid arthritis patients treated with biological disease-modifying antirheumatic drugs[J]. Int J Rheum Dis, 2016, 19(5): 470-475.
LIN T C, YOSHIDA K, TEDESCHI S K, et al. Risk of hepatitis B virus reactivation in patients with inflammatory arthritis receiving disease-modifying antirheumatic drugs: a systematic review and meta-analysis[J]. Arthritis Care Res, 2018, 70(5): 724-731.
HARIGAI M, WINTHROP K, TAKEUCHI T, et al. Evaluation of hepatitis B virus in clinical trials of baricitinib in rheumatoid arthritis[J]. RMD Open, 2020, 6(1): e001095.
WATANABE T, FUKAE J, FUKAYA S, et al. Incidence and risk factors for reactivation from resolved hepatitis B virus in rheumatoid arthritis patients treated with biological disease‐modifying antirheumatic drugs[J]. Int J Rheum Dis, 2019, 22(4): 574-582.
COUSSENS L M, WERB Z. Inflammation and cancer[J]. Nature, 2002, 420(6917): 860-867.
MORAND S, STAATS H, CREEDEN J F, et al. Molecular mechanisms underlying rheumatoid arthritis and cancer development and treatment[J]. Future Oncol, 2020, 16(9): 483-495.
LAN Y, WANG Y, LIU Y. CCR5 silencing reduces inflammatory response, inhibits viability, and promotes apoptosis of synovial cells in rat models of rheumatoid arthritis through the MAPK signaling pathway[J]. J Cell Physiol, 2019, 234(10): 18748-18762.
O’SHEA J J, SCHWARTZ D M, VILLARINO A V, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention[J]. Annu Rev Med, 2015, 66: 311-328.
MALEMUD C. Negative regulators of JAK/STAT signaling in rheumatoid arthritis and osteoarthritis[J]. Int J Mol Sci, 2017, 18(3): 484.
MALEMUD C J. The role of the JAK/STAT signal pathway in rheumatoid arthritis[J]. Ther Adv Musculoskelet Dis, 2018, 10(5-6): 117-127.
ISOMÄKI P, JUNTTILA I, VIDQVIST K L,et al. The activity of JAK-STAT pathways in rheumatoid arthritis: constitutive activation of STAT3 correlates with interleukin 6 levels[J]. Rheumatol Oxf Engl, 2015, 54(6): 1103-1113.
BAO Y, SUN Y W, JI J, et al. Genkwanin ameliorates adjuvant-induced arthritis in rats through inhibiting JAK/STAT and NF-κB signaling pathways[J]. Phytomedicine Int J Phytother Phytopharm, 2019, 63: 153036.
AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4): 783-801.
KWON H K, PATRA M C, SHIN H J, et al. A cell-penetrating peptide blocks Toll-like receptor-mediated downstream signaling and ameliorates autoimmune and inflammatory diseases in mice[J]. Exp Mol Med, 2019, 51(4): 1-19.
YU F, XIE C, JIANG C, et al. TNF-α increases inflammatory factor expression in synovial fibroblasts through the toll like receptor 3 mediated ERK/AKT signaling pathway in a mouse model of rheumatoid arthritis[J]. Mol Med Rep, 2018, 17(6): 8475-8483.
KIM K W, KIM B M, WON J Y, et al. Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis[J]. J Biochem (Tokyo), 2019, 166(3): 259-270.
GUO S, LIU J, JIANG T, et al. (5R)-5-Hydroxytriptolide (LLDT-8) induces substantial epigenetic mediated immune response network changes in fibroblast-like synoviocytes from rheumatoid arthritis patients[J]. Sci Rep, 2019, 9(1): 11155.
0
浏览量
476
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构