1.上海中医药大学附属曙光医院肝二科(上海 201203)
2.上海中医药大学肝病研究所(上海 201203)
3.上海市中医临床重点实验室(上海 201203)
4.肝肾疾病病证教育部重点实验室(上海中医药大学)(上海 201203)
王静,女,硕士,住院医师,主要从事中药肝、肾毒性的基础与临床研究;
陶艳艳,研究员,硕士研究生导师; E-mail:taoyanyan1023@126.com
扫 描 看 全 文
王静,朱哿瑞,黄恺等.马兜铃酸Ⅰ致肝、肾毒性的共性分子机制研究[J].上海中医药杂志,2022,56(05):60-67.
WANG Jing,ZHU Gerui,HUANG Kai,et al.Common molecular mechanism of aristolochic acid I inducing hepatorenal toxicity[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(05):60-67.
王静,朱哿瑞,黄恺等.马兜铃酸Ⅰ致肝、肾毒性的共性分子机制研究[J].上海中医药杂志,2022,56(05):60-67. DOI: 10.16305/j.1007-1334.2022.2103059.
WANG Jing,ZHU Gerui,HUANG Kai,et al.Common molecular mechanism of aristolochic acid I inducing hepatorenal toxicity[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(05):60-67. DOI: 10.16305/j.1007-1334.2022.2103059.
目的,2,基于转录组学分析马兜铃酸Ⅰ(AAⅠ)致小鼠肝、肾损伤的共性分子机制。,方法,2,雄性C57BL/6小鼠随机分为正常组(,n,=6)和模型组(,n,=9),模型组小鼠AAⅠ以20 mg/kg剂量腹腔注射,每天1次,连续5 d后处死。检测两组小鼠血清丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、肌酐(SCr)、尿素氮(BUN)含量和肝、肾组织病理特点;取正常组与模型组各3个肝、肾组织,提取RNA进行高通量转录组测序,将基因表达量差异倍数(FC)≥2.0且,P,<,0.01定义为差异基因,分别筛选正常组肝、肾组织与模型组肝、肾组织的差异基因,再取肝、肾差异基因的交集,应用基因本体(GO)、京都基因与基因组百科全书(KEGG)数据库进行富集功能分析;通过蛋白互作网络分析找出关联基因最多的差异基因进行qRT-PCR验证。,结果,2,与正常组比较,模型组血清ALT、AST活性及SCr、BUN含量明显升高,肝组织可见肝小叶结构紊乱、灶状坏死和轻度汇管区炎症,肾组织可观察到肾小球水肿、肾小球固缩以及肾小管上皮细胞坏死、脱落。转录组测序提示,肝、肾的共同差异基因为298个。对肝、肾共同差异基因进行GO和KEGG富集分析,发现小分子分解代谢、有机酸分解代谢、羧酸分解代谢、氧化还原酶活性、抗氧化活性、谷胱甘肽过氧化物酶活性等相关的GO分类呈显著富集;碳代谢、胰岛素抵抗、补体和凝血级联、NF-κb、JAK-STAT及PPAR信号通路等在KEGG通路中显著富集;蛋白互作网络分析及qRT-PCR验证提示,,Stat3、Cdh1、Myc、Ugt2b38、Egr1,等基因明显差异表达,与转录组结果一致。,结论,2,转录组学揭示AAⅠ致肝、肾毒性的共性机制主要涉及补体和凝血级联、氧化还原过程、NF-κb、JAK-STAT信号通路等环节。后续需针对,Stat3、Cdh1、Myc,等基因进一步深入探讨AAⅠ的肝肾毒性机制。
Objactive, To explore the common mechanism of aristolochic acid I (AAⅠ) inducing liver and kidney injury in mice based on transcriptomics.,Methods,2,Male C57BL/6 mice were randomly divided into the normal group (,n,=6) and the model group (,n,=9). The mice in the model group AAⅠ was injected intraperitoneally with a dose of 20 mg/kg once a day for 5 d and then executed. The contents of SCr, BUN, ALT and AST in serum were detected, and histological and pathological characteristics of liver and kidney were analyzed in two groups of mice. RNA was extracted from three liver and kidney tissues of the normal group and the model group respectively, and sequenced by high-throughput transcriptome. Differential genes were defined as differentially expressed genes (Fold Change) ≥2.0 and ,P,<,0.01. The differential genes in normal liver, kidney and model liver and kidney were screened respectively, and the intersection of differential genes in the liver and kidney was analyzed by gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)database. The differential genes with the most related genes were identified by protein interaction network analysis and verified by qRT-PCR.,Results,2,Compared with the normal group, the activities of ALT and AST in serum and the contents of SCr and BUN in the model group were significantly increased. The structural disorders of hepatic lobule, focal necrosis and mild inflammation in the portal area were observed in the liver tissue, and glomerular edema, glomerular pyknosis and renal tubular epithelial cell necrosis and exfoliation were observed in the renal tissue. Transcriptome sequencing showed that there were 298 common differential genes in the liver and kidney. GO and KEGG analysis of common differential genes in the liver and kidney showed that GO classification related to small molecular catabolism, organic acid catabolism, carboxylic acid catabolism, oxidoreductase activity, antioxidant activity and glutathione peroxidase activity was significantly enriched, and carbon metabolism, insulin resistance, complement and coagulation cascade, NF-κb, JAK-STAT and PPAR signaling pathways were significantly enriched in KEGG pathway. Protein interaction network analysis and qRT-PCR verification showed that there were significant differences in the expressions of ,Stat3, Cdh1, Myc, Ugt2b38, and ,Egr1,, which were consistent with the results of transcriptome.,Conclusions,2,Transcriptome reveals that the common mechanism of hepatorenal toxicity induced by AAⅠ is mainly related to complement and coagulation cascade, redox process, NF-κb, JAK-STAT signal pathway and so on. The hepatorenal toxicity mechanism of AAⅠ should be further explored based on ,Stat3, Cdh1, Myc, and other genes.
马兜铃酸I转录组学肝肾毒性小鼠中药研究
aristolochic acidtranscriptomicshepatorenal toxicitymicetraditional Chinese herbal medicine research
JI H J, LI J Y, WU S F, et al. Two new aristolochic acid analogues from the roots of aristolochiacontorta with significant cytotoxic activity[J]. Molecules, 2021, 26(1): 44-54.
HAN J, XIAN Z, ZHANG Y, et al. Systematic overview of aristolochic acids: nephrotoxicity, carcinogenicity, and underlying mechanisms[J]. Front Pharmacol, 2019(10): 648-664.
罗斌,吕自力,单旭东,等. 基于高通量转录组测序技术的无精子症患者睾丸组织比较转录组分析[J]. 生物化学与生物物理进展,2020, 47(6): 538-550.
马莲顺,肖植涛,叶杰成,等. 黄芪甲苷拮抗马兜铃酸Ⅰ所致的急性肾小管损伤[J]. 中国病理生理杂志,2012, 28(11): 1966-1970.
陶艳艳,陈高峰,刘成海. 常用急性肝损伤动物模型评价及其在中药药理研究中的应用[J].上海中医药杂志,2019, 53(11): 12-19.
WANG M, HAN W, ZHANG M, et al. Long-term renal sympathetic denervation ameliorates renal fibrosis and delays the onset of hypertension in spontaneously hypertensive rats[J]. Am J Transl Res, 2018, 10(12): 4042-4053.
ANGER E E, YU F, LI J. Aristolochic acid-induced nephrotoxicity: molecular mechanisms and potential protective approaches[J]. Int J Mol Sci, 2020, 21(3): 1157-1176.
NG A W T,POON S L,HUANG M N,et al.Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia[J]. Sci Transl Med, 2017, 9(421): eaan6446.
CHEN I H, LUO H L, SU Y L, et al. Aristolochic acid affects upper tract urothelial cancer behavior through the MAPK pathway[J]. Molecules, 2019, 24(20): 1-13.
刘伟,郭光艳,秘彩莉. 转录组学主要研究技术及其应用概述[J]. 生物学教学,2019, 44(10): 2-5.
MANZONI C, KIA D A, VANDROVCOVA J, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences[J]. Brief Bioinform, 2018, 19(2): 286-302.
OLIVERIO A L, BELLOMO T, MARIANI L H. Evolving clinical applications of tissue transcriptomics in kidney disease[J]. Front Pediatr, 2019(7):306.
TONG L, WU P Y, PHAN J H, et al. Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction[J]. Sci Rep, 2020, 10(1): 17925-17944.
RAO M S, VLEET T R, CIURLIONIS R, et al. Comparison of RNA-Seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies[J]. Front Genet, 2019,9: 636.
李海山,宋乃宁,李斌,等. 马兜铃酸I对小鼠肝脏代谢酶的影响研究[J]. 中国药物警戒,2020, 17(7): 403-407.
刘霞,肖瑛,高红昌,等. 基于1HNMR代谢组学方法分析马兜铃酸I诱导的雌雄小鼠急性肾毒性[J]. 高等学校化学学报,2010, 31(5): 927-932.
PANG M, KOTHAPALLY J, MAO H, et al. Inhibition of histone deacetylase activityattenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy[J]. Am J Physial, 2009, 297(4): F996-F1005.
KURATSUNE M, MASAKI T, HIRAI T, et al. Signal transducer and activator of transcription 3 involvement in the development of renal interstitial fibrosis after unilateral ureteral obstruction[J]. Nephrology, 2007, 12(6): 565-571.
NOJIMA D, NAKAJIMA K, LI L C, et al. CpG methylation of promoter region inactivates E-cadherin gene in renal cell carcinoma[J]. Mol Carcinog, 2001, 32(1): 19-27.
YU L, ZHANG J, GUO X, et al. MicroRNA-224 upregulation and AKT activation synergistically predict poor prognosis in patients with hepatocellular carcinoma[J]. Cancer Epidemiol, 2014, 38 (4): 408-413.
RUI C, LI C, XU W, et al. Involvement of Egr-1 in HGF-induced elevation of the human 5alpha-R1 gene in human hepatocellular carcinoma cells[J]. Biochem J, 2008, 411(2): 379-386.
刘洋,康晓明,聂晶,等. 福辛普利对UUO大鼠肾脏Klotho蛋白、TGFβ1-Smad3通路、Egr-1蛋白表达的影响[J]. 世界最新医学信息文摘,2019, 19(35): 209-210.
0
浏览量
566
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构