1.上海中医药大学附属市中医医院(上海 200071)
2.上海中医药大学(上海 201203)
3.静安区北站医院(上海 200070)
折哲,女,硕士,主治医师,主要从事中西医结合诊治呼吸系统疾病的研究工作
石克华,主任医师,硕士研究生导师; E-mail:1085@szy.sh.cn
扫 描 看 全 文
折哲,廖健杉,李文杰等.清肺颗粒干预TLR4/NF⁃κB信号通路调控COPD大鼠气道损伤的机制研究[J].上海中医药杂志,2022,56(03):64-73.
ZHE Zhe,LIAO Jianshan,LI Wenjie,et al.Effects of Qingfei Granule protecting airway injury of COPD rats by TLR4/NF⁃κB signaling pathway[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(03):64-73.
折哲,廖健杉,李文杰等.清肺颗粒干预TLR4/NF⁃κB信号通路调控COPD大鼠气道损伤的机制研究[J].上海中医药杂志,2022,56(03):64-73. DOI: 10.16305/j.1007-1334.2022.2007024.
ZHE Zhe,LIAO Jianshan,LI Wenjie,et al.Effects of Qingfei Granule protecting airway injury of COPD rats by TLR4/NF⁃κB signaling pathway[J].Shanghai Journal of Traditional Chinese Medicine,2022,56(03):64-73. DOI: 10.16305/j.1007-1334.2022.2007024.
目的,2,从气道炎症和气道屏障损伤角度探索清肺颗粒通过干预TLR4/NF-κB信号通路调控慢性阻塞性肺疾病(COPD)大鼠气道损伤的作用机制。,方法,2,SD大鼠60只,随机选取10只为正常组,其余50只大鼠均采用香烟烟雾(CS)暴露联合气管注射脂多糖(LPS)的方法建立COPD模型。造模成功后,将上述50只大鼠随机分为模型组,地塞米松组(灌胃地塞米松0.2 mg/kg),清肺低、中、高剂组(分别灌胃清肺颗粒5.4 g/kg、10.8 g/kg、21.4 g/kg),每组10只,共灌胃8周。测定大鼠肺功能变化情况,透射电镜下观察肺脏亚显微结构改变;ELISA法测定血清及支气管肺泡灌洗液(BALF)中细胞因子[包括转化生长因子β1(TGF-β1)、肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)、白介素-6(IL-6)、白介素-10(IL-10)、血管内皮生长因子(VEGF)、结缔组织生长因子(CTGF)、内皮素-1(ET-1)]含量;qRT-PCR法测定肺组织中微小RNA-146a(,miRNA-146a,)、Toll样受体4(,TLR4)、,核转录因子⁃κB(,NF⁃κB,),、,B淋巴细胞瘤⁃2基因(,Bcl⁃2,)、Bcl⁃2相关X蛋白,(Bax,)mRNA的表达情况;Western blot法测定肺组织TLR4、NF-κB、Bcl-2、Bax的蛋白表达水平。,结果,2,①与模型组比较,清肺颗粒各组的肺通气功能有所改善,表现为0.2 s用力呼气容积(FEV0.2)/用力肺活量(FVC)水平均有所上升(,P<,0.05),而RL和Re水平有不同程度下降(,P<,0.05),且清肺高剂组对大鼠肺功能FEV0.2和FEV0.2/FVC水平的改善程度与地塞米松组相似(,P>,0.05)。②通过透射电子显微镜下观察,与模型组比较,清肺高剂组的Ⅱ型肺泡上皮细胞胞浆质地均匀,核膜未见明显破坏,可见较多线粒体和板层小体,细胞形态大多正常。③与模型组比较,清肺颗粒可降低大鼠血清和BALF液中TNF-α、IL-8水平(,P<,0.05),且中、高剂量组具有一定的剂量依赖关系。④与模型组比较,清肺颗粒可上调,miRNA,-,146a, mRNA表达,降低大鼠肺组织,TLR4、NF,-,κB、Bax, mRNA和其蛋白表达量,上调,Bcl,-,2, mRNA和其蛋白表达量(,P<,0.05)。,结论,2,清肺颗粒可通过抑制TLR4/NF-κB信号通路相关mRNA及蛋白表达,抑制肺泡上皮细胞凋亡,进而达到修复气道屏障损伤的作用。
Objective,2,To explore the mechanism of Qingfei Granule regulating airway injury in COPD rats by interfering with TLR4/NF- κB signal pathway from the point of view of airway inflammation and airway barrier injury.,Methods,2,In 60 SD rats, 10 rats were randomly selected as the normal group, and the other 50 rats were exposed to cigarette smoke combined with endotracheal injection of LPS to establish COPD model. After successful establishment of the model, 50 rats were randomly divided into the model group, dexamethasone group (dexamethasone 0.2 mg/kg), Qingfei Granule low, medium and high dose groups (Qingfei Granule 5.4 g/kg, 10.8 g/kg, 21.4 g/kg, respectively), with 10 rats in each group and were respectively given the corresponding drugs by intragastric administration for 8 weeks. The changes of pulmonary function and ultrastructure of lung were observed under transmission electron microscope. The contents of cytokines (including TGF- β1, TNF- α, IL-1β, IL-6, IL-10, VEGF, CTGF and ET-1) in serum and bronchoalveolar lavage fluid (BALF) were measured by ELISA. The expressions of ,TLR4,, ,NF⁃κB,, ,Bcl⁃2, and ,Bax, mRNA in lung tissue were measured by qRT-PCR. The protein expressions of TLR4, NF-κB, Bcl-2 and Bax in lung tissue were measured by Western blot.,Results,2,①Compared with the model group, the pulmonary ventilation function of different Qingfei Granule groups was improved, showing that the level of FEV0.2/FVC was increased (,P,<,0.05), while the levels of RL and Re decreased in different degrees. The improvement degree of FEV0.2 and FEV0.2/FVC in high dose group of Qingfei Granule was similar to that in dexamethasone group(,P,>,0.05).②Through the observation under transmission electron microscope, compared with the model group, the cytoplasmic texture of type Ⅱ alveolar epithelial cells in the high dose group of Qingfei Granule was uniform. There was no obvious destruction of nuclear membrane. More mitochondria and lamellar bodies could be seen, and most of the cells were normal. ③Compared with the model group, Qingfei Granule could reduce the levels of TNF-α and IL-8 in serum and BALF fluid of rats(,P<,0.05), and the medium and the high dose groups had a certain dose-dependent relationship. ④Compared with the model group, Qingfei Granule could increased the expression of ,miRNA⁃146a, mRNA, reduce the expression of ,TLR4,, ,NF⁃κB,, ,Bax, mRNA and its protein, increased the expression of ,Bcl⁃2 ,mRNA and its protein in lung tissue of rats(,P<,0.05).,Conclusion,2,Qingfei Granule can repair the airway barrier injury by inhibiting the expression of mRNA and protein related to TLR4/NF-κB signal pathway and inhibiting the apoptosis of alveolar epithelial cells.
TLR4/NF-κB信号通路凋亡与修复机制研究模型大鼠中药研究
TLR4/NF-κB signaling pathwayapoptosis and repairmechanism studymodel ratstraditional Chinese herbal medicine research
GOUDIS C A. Chronic obstructive pulmonary disease and atrial fibrillation: An unknown relationship[J]. J Cardiol, 2017, 69 (5) : 699-705.
CLARI M, MATARESE M, IVZIKU D, et al. Self-care of people with chronic obstructive pulmonary disease: A meta-synthesis[J]. Patient, 2017, 10(2) : 407-427.
YIN P, WANG H, VOS T, et al. A subnational analysis of mortality and prevalence of COPD in China from 1990 to 2013: Findings from the global burden of disease study 2013[J]. Chest, 2016, 150 (6) : 1269-1280.
蔡柏蔷. 慢性阻塞性肺疾病诊断、处理和预防全球策略(2017 GOLD报告)解读[J]. 国际呼吸杂志,2017, 37(1): 6-17.
WU Z, TAN B, ZHANG H, et a1. Effects of sodium houttuyfonate on pulmonary inflammation in COPD model rats[J]. Inflammation, 2017, 40(6): 2109-2117.
BIDAN C M, VELDSINK A C, MEURS H, et al. Airway and extracellular matrix mechanics in COPD[J]. Front Physiol, 2015(6): 346.
刘姗姗,王丽馨,张旺旺,等. 燥邪对健康大鼠气管和肺内细小支气管黏膜组织肺泡表面活性物质相关蛋白-D表达的影响[J]. 陕西中医,2021, 42(4): 415-418.
YU X, ZHE Z, TANG B, et al. α-Asarone suppresses the proliferation and migration of ASMCs through targeting the lncRNA-PVT1/miR-203a/E2F3 signal pathway in RSV-infected rats[J]. Acta Biochim Biophys Sin, 2017, 49(7): 598-608.
ZHAO Y L, LI F, LIU Y W, et al. Adiponectin attenuates endoplasmic reticulum stress and alveolar epithelial apoptosis in COPD rats[J]. Eur Rev Med Pharmacol Sci, 2017, 21(21): 4999-5007.
FRANCISCO D, WANG Y, CONWAY M, et al. Surfactant protein-A protects against IL-13-Induced inflammation in asthma[J]. J Immunol, 2020, 204(10): 2829-2839.
JING L, SU S, ZHANG D, et al. Srolo Bzhtang, a traditional Tibetan medicine formula, inhibits cigarette smoke induced airway inflammation and muc5ac hypersecretion via suppressing IL-13/STAT6 signaling pathway in rats[J]. J Ethnopharmacol, 2019, 235(5): 424-434.
朱慧志,韩明向,丁小娟,等. 多因素慢性阻塞性肺疾病大鼠模型的建立[J]. 中国临床保健杂志,2005, 8(2): 145-147.
徐叔云. 药理实验方法学[M]. 3版. 北京:人民卫生出版社,2001: 1861.
王玮,王琦,张永生,等. 香烟联合脂多糖建立慢性阻塞性肺疾病大鼠模型[J]. 中华中医药杂志,2018, 33(9): 3866-3871.
SATIA I, CUSACK R, GREENE J M, et al. Prevalence and contribution of respiratory viruses in the community to rates of emergency department visits and hospitalizations with respiratory tract infections, chronic obstructive pulmonary disease and asthma[J]. PLoS One, 2020, 15(2): e0228544.
WU Z, TAN B, ZHANG H, et al. Effects of Sodium Houttuyfonate on pulmonary inflammation in COPD model rats[J]. Inflammation, 2017, 40(6): 2109-2117.
BIDAN C M, VELDSINK A C, MEURS H, et al. Airway and extracellular matrix mechanics in COPD[J]. Front Physiol, 2015(6): 346.
MARTIN C, FRIJA J, BURGEL P R. Dysfunctional lung anatomy and small airways degeneration in COPD[J]. Int J Chron Obstruct Pulmon Dis, 2013(8): 7-13.
CHILOSI M, POLETTI V, ROSSI A. The pathogenesis of COPD and IPF: distinct horns of the same devil[J]. Respir Res, 2012, 13(1): 3.
WALFORD H H, DOHERTY T A. STAT6 and lung inflammation[J]. JAKSTAT, 2013, 2(4): e25301.
WANG C M, JIANG M, WANG H J. Effect of NF‑κB inhibitor on high‑mobility group protein B1 expression in a COPD rat model[J].Mol Med Rep, 2013, 7(2): 499-502.
ZHANG Y, WANG X, WANG H, et al. TMEM16A-mediated mucin secretion in IL-13-induced nasal epithelial cells from chronic rhinosinusitis patients[J].Allergy Asthma Immunol Res, 2015, 7(4): 367-375.
HUARTE M, GUTTMAN M, FELDSER D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response[J]. Cell, 2016, 142 (3) : 409-419.
VAN POTTELBERGE G R, MESTDAGH P, BRACKE K R, et al. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2011, 183 (7) : 898-906.
GE L, HABIEL D M, HANSBRO P M, et al. miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways[J]. JCI Insight, 2016, 1 (20) : e90301.
LEE H, ZHANG D, ZHU Z, et al. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs[J]. Sci Rep, 2016(6): 35250.
LACASSE Y, SÉRIÈS F, CORBEIL F, et al. Randomized trial of nocturnal oxygen in chronic obstructive pulmonary disease[J].N Engl J Med, 2020, 383(12): 1129-1138.
史新阳,高晓慧,赵蓓,等. W3D通过调控TLR4/MD2-NF-κB p65信号通路改善LPS诱导的小鼠急性肺损伤[J]. 中国药理学通报,2021, 37(5): 657-661.
XIE Y F, SHU R, JIANG S Y, et al. miRNA-146 negatively regulates the production of pro-inflammatory cytokines via NF-κB signalling in human gingival fibroblasts[J]. J Inflamm (Lond), 2014, 11(1): 8.
高明,敖越,栾新红. Toll 样受体信号转导的负调控机制研究进展[J]. 动物医学进展,2015, 36(1): 96-101.
0
浏览量
460
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构