1.上海中医药大学交叉科学研究院(上海 201203)
2.上海中医药大学科技实验中心(上海 201203)
吕雅鑫,女,硕士研究生,主要从事中药干预肿瘤增殖转移机制研究工作
章丹丹,副研究员,硕士研究生导师;E-mail:izhangdd@126.com
扫 描 看 全 文
吕雅鑫, 陈龙, 蒋义鑫, 等. 淫羊藿苷抑制非小细胞肺癌生长的代谢组学研究[J]. 上海中医药杂志, 2021,55(6):84-90.
Yaxin LYU, Long CHEN, Yixin JIANG, et al. Metabonomics study on effect of icariin on non-small cell lung cancer growth[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(6):84-90.
吕雅鑫, 陈龙, 蒋义鑫, 等. 淫羊藿苷抑制非小细胞肺癌生长的代谢组学研究[J]. 上海中医药杂志, 2021,55(6):84-90. DOI: 10.16305/j.1007-1334.2021.2012020.
Yaxin LYU, Long CHEN, Yixin JIANG, et al. Metabonomics study on effect of icariin on non-small cell lung cancer growth[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(6):84-90. DOI: 10.16305/j.1007-1334.2021.2012020.
目的,2,利用液相色谱-质谱联用仪(LC-MS)考察淫羊藿苷干预非小细胞肺癌原位荷瘤裸鼠肿瘤生长中代谢组学的变化情况。,方法,2,建立非小细胞肺癌原位荷瘤裸鼠模型,随机分为模型组(即溶媒对照组)、淫羊藿苷给药组(予淫羊藿苷150 mg·kg,-1,·d,-1,),连续灌胃干预4周。小动物活体成像仪考察肺部肿瘤的生物发光值;HE染色考察肺组织变化;HPLC-LTQ-Orbitrap Elite液质联用技术检测血清中的代谢产物变化。,结果,2,淫羊藿苷给药组肿瘤生长显著抑制,较模型组肺部肿瘤的生物发光值显著降低(,P,<,0.05),肺组织病变改善,而对体质量影响不大。模型组和淫羊藿苷给药组的血清代谢产物分布显著不同,通过正交偏最小二乘法-判别分析(OPLS-DA),遴选模型组与淫羊藿苷给药组比较变量权重(VIP),>,1和组间统计值,P,<,0.05的差异代谢物。与模型组比较,淫羊藿苷给药组有20种代谢物含量显著提高,包括D-色氨酸、4-乙烯基苯酚硫酸盐、去氢抗坏血酸、柠檬酸、N-乙酰亮氨酸、N-乙酰缬氨酸、硬脂酸、N-乙酰-L-色氨酸、γ-谷氨酰亮氨酸、高香草酸、抗坏血酸2-硫酸盐、吲哚、N-乙酰-L-蛋氨酸、溶血磷脂 (LyP)、α-酮戊二酸、苹果酸、马尿酸、三聚乙醛、辛酰甘氨酸和γ-谷氨酰亮氨酸。其中显著变化的代谢产物富集途径主要为三羧酸循环、丙氨酸、天冬氨酸和谷氨酸的代谢、乙醛酸和二元酸酯的代谢以及丙酮酸的代谢。,结论,2,淫羊藿苷可能通过调控三羧酸循环、丙氨酸、天冬氨酸和谷氨酸的代谢、乙醛酸和二元酸酯、丙酮酸的代谢等途径,调控相关代谢产物水平,进而发挥抗非小细胞肺癌生长的作用。
Objective,2,To investigate the metabonomic changes of non-small cell lung cancer (NSCLC) tumor-bearing nude mice ,in vivo, with icariin by liquid chromatography-mass spectrometry (LC-MS).,Methods,2,An orthotopic tumor-bearing mouse model was established and randomly divided into model group (vehicle control) and icariin administration group (150 mg·kg,-1,·d,-1, of icariin). The drugs were given by intragastric administration continuously for 4 weeks. The bioluminescence value of lung tumor was examined by a living imaging system. The changes of lung tissue were examined by HE staining, and the changes of metabolites in serum were detected by HPLC-LTQ-Orbitrap Elite liquid chromatography-mass spectrometry.,Results,2,The tumor growth was significantly inhibited in the icariin administration group, and the bioluminescence value of lung tumor in the icariin administration group was significantly lower than that in the model group (,P,<,0.05). The pathological changes of lung tissue were improved, but had little effect on body mass. The levels of serum metabolites between the two groups showed different distributions. The differential metabolite was selected by VIP values ,>,1 between the model group and the icariin administration group(,P,<,0.05) by orthogonal partial least squares discriminant analysis (OPLS-DA). Compared with the model group, 20 metabolites significantly elevated in the icariin administration group, including D-tryptophan, 4-vinylphenol sulfate, dehydroascorbic acid, citric acid, N-acetyl-L-leucine, N-acetylvaline, stearic acid, N-acetyl-L-tryptophan, γ-glutamyl leucine, homovanillic acid, ascorbic acid 2-sulfate, indole, N-acetyl-L-methionine, lysolecithin (LyP), α-ketoglutaric acid, malic acid, hippuric acid, triacetaldehyde, octanoylglycine and γ-glutamyl leucine. These above metabolites were enriched in tricarboxylic acid cycle, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and pyruvate metabolism.,Conclusion,2,Icariin exerts anti-NSCLC effect by regulating tricarboxylic acid cycle, metabolism of alanine, aspartic acid and glutamic acid, metabolism of glyoxylic acid, dicarboxylic acid and pyruvate.
淫羊藿苷非小细胞肺癌裸鼠代谢组学三羧酸循环
icariinnon-small cell lung cancernude micemetabolomicstricarboxylic acid cycle
阙祖俊,罗斌,董昌盛,等. “正虚伏毒”肺癌研究平台的构建[J]. 上海中医药杂志,2019, 53(4): 11-16.
王欣,任英红,丁鹏,等. CDK20在肺腺癌中的表达及预后意义[J]. 检验医学与临床,2020,17(21):3073-3076.
邵帅,陈梦利,冯保荣,等. 基于meta分析的参苓白术散加减辅助治疗肺癌综合疗效系统评价[J/OL]. 辽宁中医杂志, 2020[2020-12-03]. https: //kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=LNZY20201112009&v=VIkb2pgOmHCkTV7tOIWlNG6M6Hmx8pS4KdlgYuZ4k%25mmd2Flb0 BDsh67gRRgTMLcjkDl%25mmd2Fhttps: //kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=LNZY20201112009&v=VIkb2pgOmHCkTV7tOIWlNG6M6Hmx8pS4KdlgYuZ4k%25mmd2Flb0 BDsh67gRRgTMLcjkDl%25mmd2F.
雷杰,张志文,贺梦吟,等. 淫羊藿苷对类风湿关节炎小鼠NLRP3炎性小体信号通路的影响[J]. 现代中西医结合杂志,2020,29(29):3206-3211.
王雨,李亦婕,王越,等. 淫羊藿苷在肿瘤细胞抑制方面的研究进展[J]. 中国医药指南,2015,13(4):50-51.
HUANG S, XIE T, LIU W. Icariin inhibits the growth of human cervical cancer cells by inducing apoptosis and autophagy by targeting mTOR/PI3K/AKT signalling pathway[J]. J BUON, 2019, 24(3): 990-996.
WANG P, ZHANG J, XIONG X, et al. Icariin suppresses cell cycle transition and cell migration in ovarian cancer cells[J]. Oncol Rep, 2019, 41(4): 2321-2328.
YANG L, WANG Y, GUO H, et al. Synergistic anti-cancer effects of icariin and temozolomide in glioblastoma[J]. Cell Biochem Biophys, 2015, 71(3): 1379-1385.
CHENG X, TAN S, DUAN F, et al. Icariin induces apoptosis by suppressing autophagy in tamoxifen-resistant breast cancer cell line MCF-7/TAM[J]. Breast Cancer, 2019, 26(6): 766-775.
WU X, KONG W, QI X, et al. Icariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway[J/OL]. Life Sci, 2019[2020-12-03]. https: //linkinghub.elsevier.com/retrieve/pii/S0024-3205(19)30806-9https: //linkinghub.elsevier.com/retrieve/pii/S0024-3205(19)30806-9.
LI B, HE X, JIA W, et al. Novel applications of metabolomics in personalized medicine: a mini-review[J]. Molecules, 2017, 22(7): 1173.
BUJAK R, STRUCK-LEWICKA W, MARKUSZEWSKI M J, et al. Metabolomics for laboratory diagnostics[J]. J Pharm Biomed Anal, 2015(113): 108-120.
NORELDEEN H, LIU X, XU G. Metabolomics of lung cancer: analytical platforms and their applications[J]. J Sep Sci, 2020, 43(1): 120-133.
王刚,杜士明,常明泉,等. 代谢组学在中药研究和抗肿瘤研究中的应用进展[J]. 医药导报,2010,29(3):339-342.
方婷,蒋义鑫,陈龙,等. 薏苡仁油抑制三阴性乳腺癌生长的代谢组学研究[J]. 上海中医药杂志,2020,54(2):78-84.
杨艳,韦炎龙,方峰. 淫羊藿苷治疗血液恶性肿瘤的机制研究概况[J]. 中医药临床杂志,2020,32(6):1182-1185.
GONG M J, HAN B, WANG S M, et al. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats[J]. J Pharm Biomed Anal, 2016(123): 63-73.
TIAN M, YANG S, YAN X. Icariin reduces human colon carcinoma cell growth and metastasis by enhancing p53 activities[J]. Braz J Med Biol Res, 2018, 51(10): e7151.
SUN Y, SUN X H, FAN W J, et al. Icariin induces S-phase arrest and apoptosis in medulloblastoma cells[J]. Cell Mol Biol (Noisy-le-grand), 2016, 62(4): 123-129.
FANG L, XU W, KONG D. Icariin inhibits cell proliferation, migration and invasion by down-regulation of microRNA-625-3p in thyroid cancer cells[J]. Biomed Pharmacother, 2019(109): 2456-2463.
LI X, SUN J, HU S, et al. Icariin induced B16 melanoma tumor cells apoptosis, suppressed tumor growth and metastasis[J]. Iran J Public Health, 2014, 43(6): 847-848.
GU Z F, ZHANG Z T, WANG J Y, et al. Icariin exerts inhibitory effects on the growth and metastasis of KYSE70 human esophageal carcinoma cells via PI3K/AKT and STAT3 pathways[J]. Environ Toxicol Pharmacol, 2017(54): 7-13.
ANDERSON N M, MUCKA P, KERN J G, et al. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9(2): 216-237.
SAJNANI K, ISLAM F, SMITH R A, et al. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis[J]. Biochimie, 201(135): 164-172.
NIE H, JU H, FAN J, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth[J]. Nat Commun, 2020, 11(1): 36.
朱丽颖,张一帆. 丙酮酸羧化酶及其在肿瘤代谢中的研究进展[J]. 内科理论与实践,2019,14(3):202-204.
ADEVA-ANDANY M, LÓPEZ-OJÉN M, FUNCASTA-CALDERÓN R, et al. Comprehensive review on lactate metabolism in human health[J]. Mitochondrion, 2014(17): 76-100.
GRAY L R, TOMPKINS S C, TAYLOR E B. Regulation of pyruvate metabolism and human disease[J]. Cell Mol Life Sci, 2014, 71(14): 2577-2604.
RAUCKHORST A J, TAYLOR E B. Mitochondrial pyruvate carrier function and cancer metabolism[J]. Curr Opin Genet Dev, 2016(38): 102-109.
HITOSUGI T, FAN J, CHUNG T W, et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism[J]. Mol Cell, 2011, 44(6): 864-877.
MCCOMMIS K S, FINCK B N. Mitochondrial pyruvate transport: a historical perspective and future research directions[J]. Biochem J, 2015, 466(3): 443-454.
LUKEY M J, KATT W P, CERIONE R A. Targeting amino acid metabolism for cancer therapy[J]. Drug Discov Today, 2017, 22(5): 796-804.
SOUSA C M, BIANCUR D E, WANG X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion[J]. Nature, 2016, 536(7617): 479-483.
GARCIA-BERMUDEZ J, BAUDRIER L, LA K, et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours[J]. Nat Cell Biol, 2018, 20(7): 775-781.
TIAN Y, DU W, CAO S, et al. Systematic analyses of glutamine and glutamate metabolisms across different cancer types[J]. Chin J Cancer, 2017, 36(1): 88.
CREIGHTON C, HANASH S, BEER D. Gene expression patterns define pathways correlated with loss of differentiation in lung adenocarcinomas[J]. FEBS Lett, 2003, 540(1-3): 167-170.
0
浏览量
784
下载量
0
CSCD
7
CNKI被引量
关联资源
相关文章
相关作者
相关机构