1.浙江中医药大学第二临床医学院(浙江 杭州 310052)
2.浙江省妇幼和生殖保健中心(浙江 杭州 310012)
3.浙江省中医药大学附属第二医院妇产科(浙江 杭州 310000)
周晓涵,女,硕士研究生,主要从事宫颈疾病及女性下生殖道感染的临床研究工作
宁玉梅,主任医师,硕士研究生导师;E-mail:ian2614@163.com
扫 描 看 全 文
周晓涵, 宁玉梅, 祝秀芝. 阴道白念珠菌耐药机制研究进展[J]. 上海中医药杂志, 2021,55(5):90-93,101.
Xiaohan ZHOU, Yumei NING, Xiuzhi ZHU. Research progress on drug resistance mechanism of vaginal
周晓涵, 宁玉梅, 祝秀芝. 阴道白念珠菌耐药机制研究进展[J]. 上海中医药杂志, 2021,55(5):90-93,101. DOI: 10.16305/j.1007-1334.2021.2009113.
Xiaohan ZHOU, Yumei NING, Xiuzhi ZHU. Research progress on drug resistance mechanism of vaginal
从药物的作用靶点改变、药物泵的高表达、生物膜的形成、囊泡的产生、钙信号传导途径、改变甾醇导入6个方面综述造成外阴阴道假丝酵母菌病的白念珠菌的主要耐药机制研究进展,旨在为进一步开展其耐药机制研究及指导临床合理使用抗真菌药物提供理论依据。
This review summarizes the research progress on the drug resistance mechanisms of ,Candida albicans, (CA) causing vulvovaginal candidiasis from 6 aspects, including drug target change, drug pump high expression, biofilm formation, vesicle formation, calcium signaling pathway and altered sterol introduction, in order to provide theoretical basis for further research on drug resistance mechanism of CA and guidance for rational use of antifungal drugs in clinical practice.
白念珠菌耐药机制外排泵生物膜综述
Candida albicansdrug resistanceefflux pumpbiofilmsreview
李贞,陈伟琴,胡骏,等. 中药对念珠菌的抑菌现状及机制研究进展[J]. 上海中医药杂志,2019,53(12): 83-88,92.
李林彬,宁玉梅. 外阴阴道假丝酵母菌病治疗药物剂型的演变探讨[J]. 健康研究,2016, 36(5): 514-516.
SANGUINETTI M, POSTERARO B, LASSFLORL C. Antifungal drug resistance among Candida species: mechanisms and clinical impact[J]. Mycoses, 2015, 58(Suppl 2): 2-13.
ROBBINS N, CAPLAN T, COWEN L E. Molecular evolution of antifungal drug resistance[J]. Annu Rev Microbiol, 2017(71): 753-775.
KAMAI Y, MAEBASHI K, KUDOH M, et al. Characterization of mechanisms of fluconazole resistance in a Candida albicans isolate from a Japanese patient with chronic mucocutaneous candidiasis[J]. Microbiol Immunol, 2004, 48(12): 937-943.
KAKEYA H, MIYAZAKI Y, MIYAZAKI H, et al. Genetic analysis of azole resistance in the Darlington strain of Candida albicans[J]. Antimicrob Agents Chemother, 2000, 44(11): 2985-2990.
FLOWERS S A, COLON B, WHALEY S G, et al. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans[J]. Antimicrob Agents Chemother, 2015, 59(1): 450-460.
STRZELCZYK J K, SLEMP-MIGIEL A,ROTHER M, et al. Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates[J]. Acta Biochim Pol, 2013, 60(4): 547-552.
FLOWERS S A,BARKER K S,BERKOW E L, et al. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans[J]. Eukaryot Cell, 2012, 11(10): 1289-99.
MARTEL C M, PARKER J E, BADER O, et al. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B[J]. Antimicrob Agents Chemother, 2010, 54(9): 3578-3583.
ALLEN D, WILSON D, DREW R, et al. Azole antifungals: 35 years of invasive fungal infection management[J]. Expert Rev Anti Infect Ther, 2015, 13(6): 787-98.
GUIDA A, LINDSTADT C, MAGUIRE S L, et al. Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis[J]. BMC Genomics, 2011, 628 (12): 2-14.
WU Y, WU M, WANG Y, et al. ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans[J]. FEMS Yeast Res, 2018, 18(7): 1-7.
PRASAD R, BANERJEE A, SHAH A H. Resistance to antifungal therapies[J]. Essays Biochem, 2017, 61(1): 157-166.
VERRIER P J,BIRD D,BURLA B, et al. Plant ABC proteins:a unified nomenclature and updated inventory[J]. Trends Plant Sci, 2008, 13(4): 151-159.
PRASAD R, DE WERGIFOSSE P, GOFFEAU A, et al. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals[J]. Curr Genet, 1995, 27(4): 320-329.
PRASAD R, GOFFEAU A. Yeast ATP-binding cassette transporters conferring multidrug resistance[J]. Annu Rev Microbiol, 2012(66): 39-63.
KUMAR A,NAIR R,KUMAR M, et al. Assessment of antifungal resistance and associated molecular mechanism in Candida albicans isolates from different cohorts of patients in North Indian state of Haryana[J]. Folia Microbiol (Praha), 2020, 65(4): 747-754.
BHATTACHARYA S, SOBEL J D, WHITE T C. A combination fluorescence assay demonstrates increased efflux pump activity as a resistance mechanism in azole-resistant vaginal Candida albicans isolates[J]. Antimicrob Agents Chemother, 2016, 60(10): 5858-5866.
TSAO S, RAHKHOODAEE F, RAYMOND M. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance[J]. Antimicrob Agents Chemother, 2009, 53(4): 1344-1352.
ARCHANA K R, SHAH A H, PRASAD R. MFS transporters of Candida species and their role in clinical drug resistance[J/OL]. FEMS Yeast Res, 2016[2020-09-01]. https: //pubmed. ncbi. nlm. nih. gov/27188885https: //pubmed. ncbi. nlm. nih. gov/27188885.
POURAKBARI B, TEYMURI M, MAHMOUDI S, et al. Expression of major efflux pumps in fluconazole-resistant Candida albicans[J]. Infect Disord Drug Targets, 2017, 17(3): 178-184.
PINTO A C C, ROCHA D A S, MORAES D C, et al. Candida albicans clinical isolates from a southwest brazilian tertiary hospital exhibit MFS-mediated azole resistance profile[J/OL]. An Acad Bras Cienc, 2019[2020-09-01]. https: //pubmed. ncbi. nlm. nih. gov/31365653https: //pubmed. ncbi. nlm. nih. gov/31365653.
LOHBERGER A, COSTE A T, SANGLARD D. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence[J]. Eukaryot Cell, 2014, 13(1): 127-142.
SA-CORREIA I, DOS SANTOS S C, TEIXEIRA M C, et al. Drug: H+ antiporters in chemical stress response in yeast[J]. Trends Microbiol, 2009, 17(1): 22-31.
RIZZO J, STANCHEV L D, DA SILVA V K A, et al. Role of lipid transporters in fungal physiology and pathogenicity[J]. Comput Struct Biotechnol J, 2019(17): 1278-1289.
KHANDELWAL N K, CHAUHAN N, SARKAR P, et al. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling[J]. J Biol Chem, 2018, 293(2): 412-432.
TULASIDAS S, RAO P, BHAT S, et al. A study on biofilm production and antifungal drug resistance among Candida species from vulvovaginal and bloodstream infections[J]. Infect Drug Resist, 2018(11): 2443-2448.
HAWSER S P, DOUGLAS L J. Biofilm formation by Candida species on the surface of catheter materials in vitro[J]. Infect Immun, 1994, 62(3): 915-921.
RAMAGE G, RAJENDRAN R, SHERRY L, et al. Fungal biofilm resistance[J/OL]. Int J Microbiol, 2012[2020-09-01]. https: //pubmed. ncbi. nlm. nih. gov/22518145https: //pubmed. ncbi. nlm. nih. gov/22518145.
STEWART P S, FRANKLIN M J. Physiological heterogeneity in biofilms[J]. Nat Rev Microbiol, 2008, 6(3): 199-210.
HELEEN V A, PATRICK V D, TOM C. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms[J]. Trends Microbiol, 2014, 22(6): 326-333.
DESAI J V, MITCHELL A P. Candida albicans Biofilm Development and Its Genetic Control[J/OL]. Microbiol Spectr, 2015, 3(3)[2020-09-01]. https: //www. ncbi. nlm. nih. gov/pmc/articles/PMC4507287https: //www. ncbi. nlm. nih. gov/pmc/articles/PMC4507287.
NETT J E,SANCHEZ H,CAIN M T, et al. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan[J]. J Infect Dis, 2010, 202(1): 171-175.
WUYTS J, VAN DIJCK P, HOLTAPPELS M. Fungal persister cells: The basis for recalcitrant infections?[J]. PLoS Pathog, 2018, 14(10): 1007301.
MAEBASHI K,KUDOH M,NISHIYAMA Y, et al. A novel mechanism of fluconazole resistance associated with fluconazole sequestration in Candida albicans isolates from a myelofibrosis patient[J]. Microbiol Immunol, 2002, 46(5): 317-326.
ZARNOWSKI R, SANCHEZ H, COVELLI A S, et al. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis[J/OL]. PLoS Biol, 2018, 16(10)[2020-09-01]. https: //pubmed. ncbi. nlm. nih. gov/30296253https: //pubmed. ncbi. nlm. nih. gov/30296253.
LIU S,HOU Y,CHEN X, et al. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery[J]. Int J Antimicrob Agents, 2014, 43(5): 395-402.
KARABABA M, VALENTINO E, PARDINI G, et al. CRZ1, a target of the calcineurin pathway in Candida albicans[J]. Mol Microbiol, 2006(59): 1429-1451.
JIA W,ZHANG H,LI C, et al. The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms[J]. BMC Microbiol, 2016, 16(1): 113.
ZAVREL M, HOOT S J, WHITE T C. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae[J]. Eukaryot Cell, 2013, 12(5): 725-738.
XIAO M, FAN X, CHEN S C, et al.Antifungal susceptibilities of Candida glabrata species complex,Candida parapsilosis species complex and Candida tropical causing invasive candidiasis in china: 3 year national surveillance[J]. J Antimicrob Chemother, 2015, 70(3): 802-810.
杨亚超. 康复新液对单纯性外阴阴道念珠菌病药效和机制研究[D]. 昆明:云南中医药大学,2020.
贾淑林.香莲方对耐药白念珠菌外排泵基因表达影响的研究[D]. 广州:广州中医药大学,2016.
0
浏览量
194
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构