1.长春中医药大学临床医学院(吉林 长春 130117)
2.吉林大学第二医院呼吸科(吉林 长春 130041)
于兰英,女,教授,硕士研究生导师,主要从事心血管疾病发病机制研究工作。
杜艳伟,副教授,硕士研究生导师;E-mail:duyanwei.dyw@163.com
扫 描 看 全 文
于兰英, 齐晓翠, 闻乃妍, 等. 基于线粒体功能障碍探讨中药防治心肌肥大的研究进展[J]. 上海中医药杂志, 2021,55(7):95-100.
Lanying YU, Xiaocui QI, Naiyan WEN, et al. Research progress of traditional Chinese medicine treated myocardial hypertrophy based on mitochondrial dysfunction[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(7):95-100.
于兰英, 齐晓翠, 闻乃妍, 等. 基于线粒体功能障碍探讨中药防治心肌肥大的研究进展[J]. 上海中医药杂志, 2021,55(7):95-100. DOI: 10.16305/j.1007-1334.2021.2009100.
Lanying YU, Xiaocui QI, Naiyan WEN, et al. Research progress of traditional Chinese medicine treated myocardial hypertrophy based on mitochondrial dysfunction[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(7):95-100. DOI: 10.16305/j.1007-1334.2021.2009100.
综述基于线粒体功能障碍探讨中药防治心肌肥大的研究进展。回顾线粒体的结构、功能及其功能障碍时的主要表现,从线粒体能量代谢障碍、氧化应激、动力学紊乱、线粒体DNA突变、钙稳态失衡等5个方面归纳线粒体功能障碍对心肌肥大的影响,以及中医药在治疗心肌肥大中的应用概况,为今后临床治疗心肌肥大提供了新的理论依据和视角。
This paper summarized the research progress of traditional Chinese medicine treated myocardial hypertrophy based on mitochondrial dysfunction. It reviewed the structure and function of mitochondria and the main manifestations of mitochondrial dysfunction. At the same time, it summarized the effects of mitochondrial dysfunction on myocardial hypertrophy from 5 aspects: mitochondrial energy metabolism disorder, oxidative stress, dynamic disorder, mitochondrial DNA mutation, and calcium homeostasis imbalance. The application of traditional Chinese medicine treated myocardial hypertrophy based on mitochondrial dysfunction provided a new theoretical basis and new perspective for the future.
心肌肥大中药线粒体氧化应激能量代谢综述
myocardial hypertrophytraditional Chinese herbal medicine mitochondriaoxidative stressenergy metabolismreview
GEORGINA M E, CHERYL D W, CARLA V, et al. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms[J]. Heart, 2012, 98(1): 5-10.
SHIMIZU I, MINAMINO T. Physiological and pathological cardiac hypertrophy[J]. J Mol Cell Cardiol, 2016(97): 245-262.
NICOLE M, ZOFIA M A C L, ROBERT N L. The process of mammalian mitochondrial protein synthesis[J]. Cell Tissue Res, 2017, 367(1): 5-20.
SIASOS G, TSIGKOU V, KOSMOPOULOS M, et al. Mitochondria and cardiovascular diseases—from pathophysiology to treatment[J]. Ann Transl Med, 2018, 6(12): 256.
ZHOU L Y, LIU J P, WANG K, et al. Mitochondrial function in cardiac hypertrophy[J]. Int J Cardiol,2013, 167(4): 1118-1125.
CHABAN Y, BOEKEMA E J, DUDKINA N V. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation[J]. Biochim Biophys Acta, 2014, 1837(4): 418-426.
GRAZIANI M, SARTI P, ARESE M, et al. Cardiovascular mitochondrial dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress[J]. Oxid Med Cell Longev, 2017(2017): 3034245.
PASCAL Z W, CHEUK C S. Mitochondrial dysfunction in diabetic kidney disease[J]. Clin Chim Acta,2019(496): 108-116.
KOLWICZ S C, TIAN R. Glucose metabolism and cardiac hypertrophy[J]. Cardiovasc Res, 2011, 90(2): 194-201.
PLANAVILA A, LAGUNA J C, VÁZQUEZ-CARRERA M. Nuclear factor-kappaB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy[J]. J Biol Chem, 2005, 280(17): 17464-17471.
PLANAVILA A, RODRÍGUEZ-CALVO R, JOVÉ M, et al. Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes[J]. Cardiovasc Res, 2005, 65(4): 832-841.
SHENG L, YE P, LIU Y X, et al. Peroxisome proliferator-activated receptor beta/delta activation improves angiotensin Ⅱ-induced cardiac hypertrophy in vitro[J]. Clin Exp Hypertens, 2008, 30(2): 109-119.
YOU J, YUE Z, CHEN S, et al. Receptor-interacting Protein 140 represses Sirtuin 3 to facilitate hypertrophy, mitochondrial dysfunction and energy metabolic dysfunction in cardiomyocytes[J]. Acta Physiol, 2017, 220(1): 58-71.
GUVEN C. The effect of Diazoxide on norepinephrine-induced cardiac hypertrophy, in vitro[J]. Cell Mol Biol, 2018, 64(10): 50-54.
罗凯,张腾,陈瑜. 三七总皂苷调节能量代谢干预心肌细胞肥大的效应机制研究[J]. 世界科学技术-中医药现代化,2019, 21(10): 2073-2080.
于妍,王硕仁,聂波,等. 川芎嗪、缬沙坦及曲美他嗪对乳鼠肥大心肌细胞线粒体结构和能量代谢的影响[J]. 中西医结合心脑血管病杂志,2012, 10(3): 321-324.
徐颖,李劲松,孙涛. 山楂叶总黄酮对肥大心肌细胞线粒体功能的影响[J]. 中药与临床,2016, 7(4): 35-37.
TAKIMOTO E, KASS D A. Role of oxidative stress in cardiac hypertrophy and remodeling[J]. Hypertension, 2007, 49(2): 241-248.
RABABA’H A M, GUILLORY A N, MUSTAFA R, et al. Oxidative stress and cardiac remodeling: an updated edge[J]. Curr Cardiol Rev, 2018, 14(1): 53-59.
FIGUEIRA T R, BARROS M H, CAMARGO A A, et al. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health[J]. Antioxid Redox Signal, 2013, 18(16): 2029-2074.
TETSURO A, JUNYA K, JAYASHREE P, et al. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes[J]. Circ Res, 2010, 106(7): 1253-1264.
SEDDON M, LOOI Y H, SHAH A M. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure[J]. Heart (British Cardiac Society), 2007, 93(8): 903-907.
FU D D, RABINOVITCH P. Mitochondrial oxidative stress mediates induction of autophagy and hypertrophy in angiotensin-II treated mouse hearts[J]. Autophagy, 2011, 7(8): 917-918.
CHESS D J, XU W H, KHAIRALLAH R, et al. The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet[J]. Am J Physiol Heart Circ Physiol, 2008, 295(6): 2223-2230.
吴继超,王彬,田振,等. 丹酚酸B对异丙肾上腺素所致乳鼠心肌细胞肥大的保护作用[J]. 中草药,2013, 44(17): 2422-2426.
熊朝刚,周俊,吕小会,等. 黄芪甲苷通过激活Sirt3抑制血管紧张素Ⅱ诱导的心肌肥大及氧化应激[J]. 中南药学,2019, 17(1): 34-37.
谢赛阳,邓伟,唐其柱. 穿心莲内酯对苯肾上腺素诱导的H9C2细胞肥大和氧化应激的作用及机制[J]. 中国药师,2019, 22(10): 1769-1775.
魏潇, 雷建明,郭静文,等. 白藜芦醇抑制高糖诱导的H9C2心肌细胞系肥大[J]. 基础医学与临床,2017, 37(3): 320-324.
ZHAO Y, JIANG Y, CHEN Y, et al. Dissection of mechanisms of Chinese medicinal formula Si-Miao-Yong-an decoction protects against cardiac hypertrophy and fibrosis in isoprenaline-induced heart failure[J]. J Ethnopharmacol, 2020(248): 112050.
NI H M, JESSICA A W, DING W X. Mitochondrial dynamics and mitochondrial quality control[J]. Redox Biol, 2015(4): 6-13.
TROTTA A P, CHIPUK J E. Mitochondrial dynamics as regulators of cancer biology[J]. Cell Mol Life Sci, 2017, 74(11): 1999-2017.
ONG S B, DEREK J. Mitochondrial morphology and cardiovascular disease[J]. Cardiovasc Res, 2010, 88(1): 16-29.
GUAN X X, WANG L, LIU Z H, et al. miR-106a promotes cardiac hypertrophy by targeting mitofusin 2[J]. J Mol Cell Cardiol, 2016(99): 207-217.
SUN D D, LI C, LIU J L, et al. Expression profile of micrornas in hypertrophic cardiomyopathy and effects of microRNA-20 in inducing cardiomyocyte hypertrophy through regulating gene MFN2[J]. DNA Cell Biol, 2019, 38(8): 796-807.
HASAN P, SAOTOME M, IKOMA T, et al. Mitochondrial fission protein, dynamin-related protein 1, contributes to the promotion of hypertensive cardiac hypertrophy and fibrosis in Dahl-salt sensitive rats[J]. J Mol Cell Cardiol, 2018(121): 103-106.
吴舜,陈明君,周燕. 槲皮黄酮改善心肌细胞肥大过程中对线粒体功能及动力学的影响[J]. 天津中医药,2019, 36(1): 83-86.
LIU F, SU H, LIU B, et al. STVNa Attenuates isoproterenol-induced cardiac hypertrophy response through the HDAC4 and Prdx2/ROS/Trx1 pathways[J]. Int J Mol Sci, 2020, 21(2): 682.
LEE S R, HAN J. Mitochondrial mutations in cardiac disorders[J]. Adv Exp Med Biol, 2017(982): 81-111.
BASANT S, UDIT C, BHOOMIKA M. Beneficial effect of silymarin in pressure overload induced experimental cardiac hypertrophy[J]. Cardio Toxi, 2019, 19(1): 23-35.
MARÍN-GARCÍA J. Mitochondrial DNA repair: a novel therapeutic target for heart failure[J]. Heart Fail Rev, 2016, 21(5): 475-487.
TIGCHELAAR W, YU H J, DE JONG A M, et al. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy[J]. Am J Physiol Cell Physiol, 2015, 308(2): C155-C163.
JORGE E V G, PERLA P T, IRAIS R Á, et al. The 8-oxo-deoxyguanosine glycosylase increases its migration to mitochondria in compensated cardiac hypertrophy[J]. J Am Soc Hypertens, 2017, 11(10): 660-672.
UPADHYAY S, MANTHA A K, DHIMAN M. Glycyrrhizaglabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes[J]. J Ethnopharmacol, 2020(258): 112690.
NI Y, DENG J, LIU X, et al. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol[J]. J Cell Mol Med, 2021, 25(1): 203-216.
MICHALAK M, GROENENDYK J, SZABO E, et al. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum[J]. Biochem J, 2009, 417(3): 651-666.
ARNAUDEAU S, FRIEDEN M, NAKAMURA K, et al. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria[J]. J Biol Chem, 2002, 277(48): 46696-46705.
LIU H, BOWES R C, VAN DE WATER B, et al. Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells[J]. J Biol Chem, 1997, 272(35): 21751-21759.
单虎,魏瑾,张明,等. 钙网蛋白参与诱导线粒体损伤心肌细胞肥大的新机制[J]. 南方医科大学学报,2014, 34(9): 1248-1253.
CAMACHO L J E, TIAN Q H, HAMMER K, et al. A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling[J]. Eur Heart J, 2015, 36(33): 2257-2266.
杨怡,田玥,沈阳,等. 线粒体钙离子摄入蛋白1在血管紧张素Ⅱ诱导小鼠心肌肥大病理变化中的保护作用[J]. 解放军医学杂志,2017, 42(12): 1051-1055.
CHU J X, LI G M, GAO X J, et al. Buckwheat rutin inhibits AngⅡ-induced cardiomyocyte hypertrophy via blockade of caN-dependent signal pathway[J]. Iran J Pharm Res, 2014, 13(4):1347-1355.
蒋红,何雯,张晨. 异叶青兰总黄酮对去甲肾上腺素诱导大鼠心肌细胞肥大的抑制作用[J]. 医药导报,2019, 38(2): 153-159.
ZHENG J, TIAN J, WANG S, et al. Stachydrine hydrochloride suppresses phenylephrine-induced pathological cardiac hypertrophy by inhibiting the calcineurin/nuclear factor of activated T-cell signallingpathway[J]. Eur J Pharmacol, 2020 (883): 173386.
0
浏览量
654
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构