1.黑龙江中医药大学临床医学院(黑龙江 哈尔滨 150040)
2.黑龙江中医药大学附属第一医院骨伤科(黑龙江 哈尔滨 150040)
3.黑龙江中医药大学附属第二医院骨伤科(黑龙江 哈尔滨 150001)
4.东北师范大学生命科学院(吉林 长春 130024)
5.浙江省中医院肾病科(浙江 杭州 310006)
6.暨南大学医学部(广东 广州 510632)
宋寒冰,男,博士,副主任医师,主要从事中西医结合防治骨伤科疾病的临床研究工作
申意伟,博士;E-mail:yellwell@qq.com
扫 描 看 全 文
宋寒冰, 李雪, 申意伟, 等. 基于菌群16S测序技术探究益和方对小鼠脂质代谢和骨髓炎症因子以及肠道微生态的影响[J]. 上海中医药杂志, 2021,55(5):70-76.
Hanbing SONG, Xue LI, Yiwei SHEN, et al. Effect of Yihefang on lipid metabolism, bone marrow inflammatory factors and intestinal microecology in mice based on 16S rDNA sequencing technology of microbiome[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(5):70-76.
宋寒冰, 李雪, 申意伟, 等. 基于菌群16S测序技术探究益和方对小鼠脂质代谢和骨髓炎症因子以及肠道微生态的影响[J]. 上海中医药杂志, 2021,55(5):70-76. DOI: 10.16305/j.1007-1334.2021.2005063.
Hanbing SONG, Xue LI, Yiwei SHEN, et al. Effect of Yihefang on lipid metabolism, bone marrow inflammatory factors and intestinal microecology in mice based on 16S rDNA sequencing technology of microbiome[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(5):70-76. DOI: 10.16305/j.1007-1334.2021.2005063.
目的,2,通过菌群16S rDNA测序技术,探讨益和方在调节小鼠肠道菌群微生态结构、骨髓异常炎症反应及血清脂质代谢中的作用。,方法,2,将30只雄性C57BL/6J小鼠随机分为正常组、高脂组与益和方组。高脂组给予高脂饮食诱导复制脂质代谢紊乱模型,益和方组在高脂组基础上给予等量益和方中药液灌胃。干预12周时收集小鼠新鲜粪便、血清及骨髓液样品,检测血清胆固醇及三酰甘油水平,qPCR及Western blot法检测炎症因子白介素-6(IL-6)水平,粪便样品行16S测序检测菌群多样性。,结果,2,与高脂组比较,益和方组小鼠体质量、血清胆固醇及三酰甘油水平均显著降低(,P,<,0.05,,P,<,0.01),骨髓中IL-6转录及蛋白表达均显著降低(,P,<,0.05),肠道菌群微生态结构趋于正常化。,结论,2,益和方可调节高脂饮食诱导的机体脂质代谢紊乱,缓解骨髓异常炎症反应,同时对肠道微生态失衡的恢复重建亦有积极作用。
Objective,2,To explore the role of Yihefang in regulating the microecological structure of gut microbiota, bone marrow abnormal inflammation and serum lipid metabolism in mice by 16S rDNA sequencing technology.,Methods,2,Thirty male C57BL/6J mice were randomly divided into normal group, high-fat group and Yihefang group. The high-fat group was given a high-fat diet to induce a lipid metabolism disorder model, and the Yihefang group was given the same amount of Yihefang liquid on the basis of the high-fat group. At 12 weeks of the treatment, samples of fresh feces, serum and bone marrow fluid were collected from mice to detect serum cholesterol and triglyceride levels. qPCR and Western blot were used to detect IL-6 levels of inflammatory factors, and 16S rDNA sequencing to detect bacterial diversity of stool samples.,Results,2,Compared with the high-fat group, the body weight, serum cholesterol and triglyceride levels of mice in Yihefang group were significantly reduced (,P,<,0.05,P,<,0.01); IL-6 transcription and protein expression in bone marrow were significantly reduced (,P,<,0.05); and the microecological structure of gut microbiota tended to be normalization.,Conclusion,2,Yihefang can regulate the disorder of lipid metabolism induced by high-fat diet, alleviate the abnormal inflammatory reaction of bone marrow, and also play a positive role in the recovery and reconstruction of intestinal microecological imbalance.
脂质代谢高脂肪饮食模型小鼠肠道菌群炎症16S测序中药研究
lipid metabolismhigh fat dietmodel micegut microbiotainflammation16S rDNA sequencingtraditional Chinese medicine research
ZHOU Z, PAN C, WANG N, et al. A high-fat diet aggravates osteonecrosis through a macrophage-derived IL-6 pathway[J]. Int Immunol, 2019, 31(4): 263-273.
DING N, ZHANG X, ZHANG X D, et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes[J]. Gut, 2020, 69(9): 1608-1619.
EVERARD A, PLOVIER H, RASTELLI M, et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis[J]. Nat Commun, 2019, 10(1): 457.
HUSSAIN M, BONILLA-ROSSO G, KWONG CHUNG C K C, et al. High dietary fat intake induces a microbiota signature that promotes food allergy[J]. J Allergy Clin Immunol, 2019, 144(1): 157-170.
MIYAMOTO J, IGARASHI M, WATANABE K, et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids[J]. Nat Commun, 2019, 10(1): 4007.
NATIVIDAD J M, LAMAS B, PHAM H P, et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice[J]. Nat Commun, 2018, 9(1): 2802.
WAN Y, WANG F, YUAN J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial[J]. Gut, 2019, 68(8): 1417-1429.
TAKANO K, TATEBE J, WASHIZAWA N, et al. Curcumin inhibits age-related vascular changes in aged mice fed a high-fat diet[J]. Nutrients, 2018, 10(10): 1-10.
王佳丽,修成奎,杨静,等. 人参三七川芎提取物对高糖高脂诱导血管衰老小鼠肠道菌群的影响[J]. 中国中药杂志,2020, 45(12): 2938-2946.
肖晴,黄文祥,章述军,等. 人参皂苷Rg1激活腺苷酸激活蛋白激酶抑制体外诱导的非酒精性脂肪性肝细胞模型脂质沉积[J]. 第三军医大学学报,2019, 41(14): 1343-1349.
李士侠. 丹参素上调LCAT和CYP7A1的表达对高血脂大鼠脂质紊乱的调节作用[J]. 现代食品科技,2018, 34(8): 31-35.
万强,陈洪涛,万蝉俊,等. 丹参酮ⅡA对动脉粥样硬化小鼠脂质运载蛋白-2表达的干预研究[J]. 中华中医药学刊,2017, 35(5): 1158-1160.
费雯婕,张琳,段力园,等. 氧化苦参碱改善棕榈酸诱导的HepG2细胞脂质沉积及氧化应激的研究[J]. 重庆医科大学学报,2016, 41(11): 1125-1130.
杨奕樱,刘明,胡婧晔,等. 吴茱萸碱对高脂血症小鼠脂质代谢的影响[J]. 中国实验方剂学杂志,2020, 26(6): 46-51.
刘蕊,赵健蕾,孙晓东,等. 中药淫羊藿调控肝脏脂代谢功能初探[J]. 中药药理与临床,2018, 34(1): 92-96.
王和生,林亚平,齐敏友,等. 黄精首乌有效部分均匀设计组合对高脂血症大鼠抗脂质过氧化的影响[J]. 中华中医药杂志,2005, 1(8): 502-504.
余琳媛,全云云,龚莉虹,等. 制首乌醇提物及其主要成分大黄素对斑马鱼非酒精性脂肪肝的治疗作用[J]. 天然产物研究与开发,2019, 31(5): 766-771.
XU P,WANG J,HONG F,et al. Melatonin prevents obesity through modulation of gut microbiota in mice[J]. J Pineal Res,2017, 62(4): 1-5.
李文毅,周春阳. 高脂血症与动脉粥样硬化和脂代谢研究进展[J]. 中国药理学与毒理学杂志,2019, 33(10): 811.
PASCALE A, MARCHESI N, GOVONI S, et al. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases[J]. Curr Opin Pharmacol, 2019, 49(1): 1-5.
张月辉,姜虹,矫亚男,等. 血清脂质运载蛋白2、骨代谢指标与中年女性骨密度相关性研究[J]. 中国骨质疏松杂志,2019, 25(12): 1739-1742.
李艳,宋亚刚,苗明三,等. 基于高脂血症临床病症特点的动物模型分析[J]. 中华中医药杂志,2018, 33(8): 3557-3561.
郭玉倩,陆姜利,角建林,等. D-半乳糖增加树鼩肠道IL-18的表达及肠道菌群失调[J]. 中国比较医学杂志,2020, 30(3): 50-55.
BOULANGE C L, NEVES A L, CHILLOUX J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease[J]. Genome Med, 2016, 8(1): 42.
WOLTERS M, AHRENS J, ROMANÍ-PÉREZ M, et al. Dietary fat, the gut microbiota, and metabolic health-a systematic review conducted within the MyNewGut project[J]. Clin Nutr, 2019, 38(6): 2504-2520.
陈琳琳,李后开. 靶向肠道微生态:中药药效机理研究的新机遇与挑战[J]. 上海中医药杂志,2020, 54(2): 14-20.
BAILEY M A, HOLSCHER H D. Microbiome-mediated effects of the mediterranean diet on inflammation[J]. Adv Nutr, 2018, 9(3): 193-206.
YIN J, LI Y, HAN H, et al. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice[J]. J Pineal Res, 2018, 65(4): e12524.
SILVA Y P, BERNARDI A, FROZZA R L. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol (Lausanne), 2020(11):25.
申意伟,李雪,范桢亮,等. 益和方对高脂饮食诱导小鼠肠壁通透性及肠道菌群和骨髓脂质功能的影响[J]. 中华中医药学刊,2021, 39(2): 1-13.
姜婷,陆为民,王昱茜,等. 从肠道菌群论“上下交损,当治其中”的科学内涵[J]. 中医杂志,2020, 61(2): 119-122.
0
浏览量
361
下载量
0
CSCD
3
CNKI被引量
关联资源
相关文章
相关作者
相关机构