1.上海中医药大学附属普陀医院内分泌科(上海 200062)
谢秀英,女,硕士研究生,住院医师,主要从事糖尿病及其并发症研究
陈琳,副主任医师,硕士研究生导师;E-mail: 18602108180@163.com
扫 描 看 全 文
谢秀英, 沙雯君, 雷涛, 等. 中医药通过调节肝糖异生从脾论治糖尿病研究进展[J]. 上海中医药杂志, 2021,55(5):94-101.
Xiuying XIE, Wenjun SHA, Tao LEI, et al. Advances in mechanism research of anti-diabetic traditional Chinese medicine from spleen in inhibiting hepatic gluconeogenesis[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(5):94-101.
谢秀英, 沙雯君, 雷涛, 等. 中医药通过调节肝糖异生从脾论治糖尿病研究进展[J]. 上海中医药杂志, 2021,55(5):94-101. DOI: 10.16305/j.1007-1334.2021.2001159.
Xiuying XIE, Wenjun SHA, Tao LEI, et al. Advances in mechanism research of anti-diabetic traditional Chinese medicine from spleen in inhibiting hepatic gluconeogenesis[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(5):94-101. DOI: 10.16305/j.1007-1334.2021.2001159.
肝糖异生异常增多是糖尿病发生重要机制之一,胰岛素抵抗是2型糖尿病的病理基础,肝脏胰岛素抵抗导致肝糖异生增加。磷酸烯醇式丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(G6Pase)是肝糖异生关键酶,,CREB,、,TORC,2、,PGC,-1ɑ等转录因子启动PEPCK和G6Pase转录、促进肝糖异生,亦是药物调节血糖作用的分子靶点。从中医角度来讲,过度肝糖异生与脾失健运和脾不藏精有关。“从脾论治”,通过调节脾的运化功能及“藏精”功能治疗消渴气阴两虚证、脾虚湿盛证、湿热互结证,以减少肝糖异生成为近年中医药治疗糖尿病研究热点。多种中药复方通过益气健脾、养阴生津、健脾祛湿、清热利湿等,改善消渴“三多一少”症状、降低血糖,其活性成分经现代医学研究证实可改善胰岛素抵抗、抑制肝糖异生分子通路,为研究中医药通过肝糖异生防治糖尿病提供了更多实证依据。
Abnormally increased hepatic gluconeogenesis plays an important role in diabetes. Insulin resistance is the pathological basis of T2DM, leading to an increase in hepatic gluconeogenesis. PEPCK and G6Pase, two key enzymes of hepatic gluconeogenesis, are activated by transcription factors such as ,CREB,TORC,2 and ,PGC,-1ɑ, which are also molecular targets of medicines in regulating blood glucose. From the perspective of traditional Chinese medicine, excessive hepatic gluconeogenesis is associated with dysfunction of the spleen in transport and storing essence. In recent years, "treatment from spleen" , by the regulation of spleen transport and storing essence function to treat diabetes of deficiency of Qi and Yin syndrome, spleen deficiency and dampness syndrome and damp-heat syndrome to reduce the hepatic gluconeogenesis, has become a hot spot of diabetes research. The anti-diabetic activity of traditional Chinese medicines has been proved and their mechanisms in improving insulin resistance and inhibiting transcription of hepatic gluconeogenesis have been identified, through treating diabetes from spleen, replenishing vital energy, dispelling dampness and clearing heat and removing dampness. These researches holds extensive promise for the clinical application of traditional Chinese medicine.
糖尿病中药复方肝糖异生胰岛素抵抗从脾论治综述
diabetestraditional Chinese herbal formulagluconeogenesisinsulin resistancetreatment from the spleenreview
International Diabetes Federation. Press release: new IDF figures show continued increase in diabetes across the globe, reiterating the need for urgent action[EB/OL]. (2017-11-14)[2020-01-11]. https://www.idf.org/https://www.idf.org/.
XU Y, WANG L M, HE J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9): 948-959.
WANG L M, GAO P, ZHANG M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24): 2515-2523.
PETERSEN M C, VANTER D F, SHULMAN G I. Regulation of hepatic glucose metabolism in health and disease[J]. Nat Rev Endocrinol, 2017, 13(10): 572-587.
CHU P Y, JIANG S S, SHAN Y S, et al. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M)regulates the cell metabolism of pancreatic neuroendocrine tumors(pNET)and de-sensitizes pNET to mTOR inhibitors[J]. Oncotarget, 2017, 8(61): 103613-103625.
HE L N, LI Y, ZENG N, et al. Regulation of basal expression of hepatic PEPCK and G6Pase by AKT2[J]. Biochem J, 2020, 477(5): 1021-1031.
陈亚琼,王鹏飞,刘浥. 基于肝糖异生的降血糖药物研发进展[J]. 药学进展,2017, 41(10): 733-741.
SAMPATH KUMAR A, MAIYA A G, SHASTRY B A, et al. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Ann Phys Rehabil Med, 2019, 62(2): 98-103.
VOSS C M, PAJCKA K, STRIDH M H, et al. AMPK activation affects glutamate metabolism in astrocytes[J]. Neurochem Res, 2015, 40(12): 2431-2442.
CARLING D. AMPK signalling in health and disease[J]. Curr Opin Cell Biol, 2017(45): 31-37.
SONG Y H, ZHAI L T, VALENCIA SWAIN J, et al. Structural insights into the CRTC2-CREB complex assembly on CRE[J]. J Mol Biol, 2018, 430(13): 1926-1939.
HOGAN M F, RAVNSKJAER K, MATSUMURA S, et al. Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2[J]. J Biol Chem, 2015, 290(43): 25997-26006.
BABST M. Regulation of nutrient transporters by metabolic and environmental stresses[J]. Curr Opin Cell Biol, 2020(65): 35-41.
ERION D M, KOTAS M E, MCGLASHON J, et al .cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2(CRTC2)promotes glucagon clearance and hepatic amino acid catabolism to regulate glucose homeostasis[J]. J Biol Chem, 2013, 288(22): 16167-16176.
VILLENA J A. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond[J]. FEBS J, 2015, 282(4): 647-672.
BESSE-PATIN A, LÉVEILLÉ M, OROPEZA D, et al. Estrogen signals through peroxisome proliferator-activated receptor-γ coactivator 1ɑ to reduce oxidative damage associated with diet-induced fatty liver disease[J]. Gastroenterology, 2017, 152(1): 243-256.
DAVYDOV D M, NURBEKOV M K. Central and peripheral pathogenetic forms of type 2 diabetes: a proof-of-concept study[J]. Endocr Connect, 2016, 5(2): 55-64.
LÉVEILLÉ M, BESSE-PATIN A, JOUVET N, et al. PGC-1α isoforms coordinate to balance hepatic metabolism and apoptosis in inflammatory environments[J]. Mol Metab, 2020(34): 72-84.
SHARANI K, LIN H, TAVARES C D J, et al. Selective chemical inhibition of PGC-1ɑ gluconeogenic activity ameliorates type 2 diabetes[J]. Cell, 2017, 169(1): 148-160.
LEE J, SALAZAR HERNÁNDEZ M A, AUEN T, et al. PGC-1ɑ functions as a co-suppressor of XBP1s to regulate glucose metabolism[J]. Mol Metab, 2018(7): 119-131.
DANKEL S N, HOANG T, FLÅGENG M H, et al. cAMP-mediated regulation of HNF-4alpha depends on the level of coactivator PGC-1ɑ[J]. Biochimi Biophys Acta, 2010, 1803(9): 1013-1019.
LIN S C, HAEDIE D G. AMPK: sensing glucose as well as cellular energy status[J]. Cell Metab, 2018, 27(2): 299-313.
GARCIA D, SHAW R J. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Mol Cell, 2017, 66(6): 789-800.
LV S H, QIU X C, LI J, et al. Glucagon-induced extracellular cAMP regulates hepatic lipid metabolism[J]. J Endocrinol, 2017, 234(2): 73-87.
HILL M J, SUZUKI S, SEGARS J H, et al. CRTC2 is a coactivator of GR and couples GR and CREB in the regulation of hepatic gluconeogenesis[J]. Mol Endocrinol, 2016, 30(1): 104-117.
王爽,甘爱萍. 浅析糖尿病从脾论治[J]. 世界最新医学信息文摘,2017, 17(99): 219.
唐海飞. 从“脾壅络滞”探讨肥胖2型糖尿病胰岛素抵抗的中医病机及治疗[J]. 中西医结合心血管病电子杂志,2020, 8(30): 182, 190.
于雪飞,杨天翼,康立华,等. 从“脾藏精”试论糖尿病糖代谢[J]. 环球中医药,2018, 11(10): 1647-1648.
郑腊萍. 从脾失健运论治糖耐量异常[J]. 中医药临床杂志,2020, 32(7): 1225-1228.
LIU Q, ZHANG F G, ZHANG W S, et al. Ginsenoside Rg1 inhibitsglucagon-induced hepatic gluconeogenesis through AKT-FoxO1 interaction[J]. Theranostics, 2017, 7(16): 4001-4012.
YUAN H D, KIM D Y, QUAN H Y, et al. Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3β via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells[J]. Chem Biol Interact, 2012, 195(1): 35-42.
MENG F L, SU X T, LI W, et al. Ginsenoside Rb3 strengthens the hypoglycemic effect through AMPK for inhibition of hepatic gluconeogenesis[J]. Exp Ther med, 2017, 13(5): 2551-2557.
WEI S N, LI W, YU Y, et al. Ginsenoside compound K suppresses the hepatic gluconeogenesis via activating adenosine-5’monophosphate kinase: a study in vitro and in vivo[J]. Life Sci, 2015(139): 8-15.
FANG P H, YU M, ZHANG L, et al. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway[J]. Mol Cell Endocrinol, 2017(448): 77-86.
WANG T, JIANG H M, CAO S J, et al. Baicalin and its metabolites suppresses gluconeogenesis through activation of AMPK or AKT in insulin resistant HepG-2 cells[J]. Eur J Med Chem, 2017(141): 92-100.
DU Q, ZHANG S H, LI A Y, et al. Astragaloside Ⅳ inhibits adipose lipolysis and reduces hepatic glucose production via AKT dependent PDE3B expression in HFD-Fed mice[J/OL]. Front Physiol, 2018[2020-01-11]. https://pubmed.ncbi.nlm.nih.gov/29410630/https://pubmed.ncbi.nlm.nih.gov/29410630/.
WANG C Y, LI Y, HAO M J, et al. Astragaloside Ⅳ inhibits triglyceride accumulation in insulin-resistant HepG2 cells via AMPK-induced SREBP-1c phosphorylation[J/OL]. Front Pharmacol, 2018[2020-01-11]. https://pubmed.ncbi.nlm.nih.gov/29713279/https://pubmed.ncbi.nlm.nih.gov/29713279/.
ZHANG R X, QIN X Z, ZHANG T, et al. Astragalus polysaccharide improves insulin sensitivity via AMPK activation in 3T3-L1 adipocytes[J/OL]. Molecules, 2018[2020-01-11]. https://pubmed.ncbi.nlm.nih.gov/30347867/https://pubmed.ncbi.nlm.nih.gov/30347867/.
MAO Z J, LIN M, ZHANG X, et al. Combined use of astragalus polysaccharide and berberine attenuates insulin resistance in IR-HepG2 cells via regulation of the gluconeogenesis signaling pathway[J/OL]. Front Pharmacol, 2019[2020-01-11]. https://pubmed.ncbi.nlm.nih.gov/31920677/https://pubmed.ncbi.nlm.nih.gov/31920677/.
CUI X W, WANG S Y, CAO H, et al. A review: the bioactivities and pharmacological applications of polygonatum sibiricum polysaccharides[J/OL]. Molecules, 2018[2020-01-11]. https://pubmed.ncbi.nlm.nih.gov/29757991/https://pubmed.ncbi.nlm.nih.gov/29757991/.
ZHANG Y S, MA Y L, THAKUR K, et al. Molecular mechanism and inhibitory targets of dioscin in HepG2 cells[J]. Food Chemical Toxicology, 2018(120): 143-154.
LUO J Y, CHAI Y Y, ZHAO M, et al. Hypoglycemic effects and modulation of gut microbiota of diabetic mice by saponin from Polygonatum sibiricum[J]. Food Funct, 2020, 11(5): 4327-4338.
KO J H, KWON H S, YOON J M, et al. Effects of polygonatum sibiricum rhizome ethanol extract in high-fat diet-fed mice[J]. Pharm Biol, 2015, 53(4): 563-570.
贾璐,石洁,段志倩,等. 黄精多糖对高脂饲料诱发糖尿病小鼠糖代谢功能的影响[J]. 中国医药导报,2017, 14(8): 24-28.
黎宇,罗新新,严奉东,等. 葛根上调肝胰岛素抵抗HepG2细胞OB-R,IRS2,GLUT1和GLUT2 蛋白调节糖代谢的研究[J]. 中国中药杂志,2017, 42(10): 1939-1944.
王春怡,高颖,李艳,等. 黄芪散有效部位群对Ⅱ型糖尿病大鼠肝糖原及糖异生酶的影响[J]. 中药新药与临床药理,2018, 29(1): 1-7.
李新萍,周书琦,徐丽丽,等. 山药多糖的提取及其对糖尿病小鼠的影响研究[J]. 黑龙江医药,2018, 31(1): 20-22.
SHIH C C, LIN C H, LIN Y J, et al. Validation of the antidiabetic and hypolipidemic effects of hawthorn by assessment of gluconeogenesis and lipogenesis related genes and AMP-activated protein kinase phosphorylation[J/OL]. Evid Based Complement Alternat Med, 2013[2020-01-11]. https://pubmed.ncbi.nlm.nih.gov/23690849/https://pubmed.ncbi.nlm.nih.gov/23690849/.
LIN X J, SHI H, CUI Y, et al. Dendrobium mixture regulates hepatic gluconeogenesis in diabetic rats via the phosphoinositide-3-kinase/protein kinase B signaling pathway[J]. Exp Ther Med, 2018, 16(1): 204-212.
白富彬. 七味白术散改善2型糖尿病血糖波动的临床探讨[J]. 中国中医药现代远程教育,2015, 13(20): 137-138.
张洁. 七味白术散合补阳还五汤治疗肥胖2型糖尿病及改善胰岛素抵抗研究[J]. 陕西中医,2018, 39(7): 919-921.
牛延峰. 七味白术散加减辅助治疗84例2型糖尿病的疗效分析[J]. 中医临床研究,2014, 6(31): 59-60.
王芳,高英,李卫民,等. 黄芪散对糖尿病大鼠股骨和胫骨的作用研究[J]. 中国骨质疏松杂志,2016, 22(3): 278-282,287.
徐慕娟,王玲,常晓,等. 黄芪散治疗糖尿病心肌病的临床观察[J]. 中国实用医药,2015, 10(18): 169-170.
徐隽斐,侯瑞芳,顾逸梦,等. 健脾清化方对2型糖尿病(气阴两虚型)血糖波动的作用研究[J]. 辽宁中医杂志,2015, 42(9): 1674-1676.
邱艳,谭凌婕,陈清光,等. 健脾清化方对2型糖尿病大鼠肝脏糖异生的影响[J]. 上海中医药大学学报,2018, 32(4): 82-88.
李俊燕,陶枫,陈清光,等. 健脾清化方对2型糖尿病大鼠基因表达谱及信号通路的影响[J]. 中医杂志,2015, 56(17): 1498-1501.
吕姗珊,唐桂英,周年华,等. 麦芪降糖丸对2型糖尿病模型大鼠影响的实验研究[J]. 世界中西医结合杂志,2014, 9(9): 934-937.
王晓敏,周志愉,施翠芬,等. 一贯煎对2型糖尿病大鼠血糖、IL-6及PI3K的影响[J]. 时珍国医国药,2013, 24(1): 257-258.
齐密霞,宁花兰,杨艳芳,等. 小柴胡汤对2型糖尿病小鼠的作用研究[J]. 医药导报,2014, 33(4): 434-438.
0
浏览量
671
下载量
0
CSCD
8
CNKI被引量
关联资源
相关文章
相关作者
相关机构