1.上海中医药大学附属龙华医院中西医结合乳腺科(上海 200032)
2.上海市中西医结合医院普外科(上海 200082)
张帅,男,硕士,住院医师,主要从事乳腺病的中西医结合诊疗工作
刘胜,主任医师,博士研究生导师;E-mail:lshtcm@163.com
扫 描 看 全 文
张帅, 陈娟, 刘胜. 基于数据挖掘的刘胜治疗三阴性乳腺癌用药规律研究[J]. 上海中医药杂志, 2021,55(10):19-23.
Shuai ZHANG, Juan CHEN, Sheng LIU. Data mining-based study of professor Liu Sheng’s medication principles for triple negative breast cancer[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(10):19-23.
张帅, 陈娟, 刘胜. 基于数据挖掘的刘胜治疗三阴性乳腺癌用药规律研究[J]. 上海中医药杂志, 2021,55(10):19-23. DOI: 10.16305/j.1007-1334.2021.1812023.
Shuai ZHANG, Juan CHEN, Sheng LIU. Data mining-based study of professor Liu Sheng’s medication principles for triple negative breast cancer[J]. Shanghai Journal of Traditional Chinese Medicine, 2021,55(10):19-23. DOI: 10.16305/j.1007-1334.2021.1812023.
目的,2,借助数据挖掘技术分析总结刘胜教授治疗三阴性乳腺癌的用药规律。,方法,2,收集刘胜教授治疗三阴性乳腺癌的门诊病历资料及处方,采用Excel 2010软件建立数据库,并统计中药使用频率及其功效、四气、五味、归经等信息;采用IBM SPSS Modeler 14.1软件建模,借助Apriori算法进行药物关联规则分析、症状-药物关联规则分析;采用IBM SPSS 21.0统计软件进行聚类分析,以获得核心用药。,结果,2,①共纳入66例患者,涉及1 000张处方、252种中药。②使用频率较高的是归肝经、脾经、肺经、胃经、肾经的药物,其中使用频率>50%的药物有白术、茯苓、石见穿、党参、莪术、龙葵、淫羊藿、半枝莲、首乌藤、合欢皮、百合。③按药物功效分类,使用频率排前6位的依次为清热解毒药、补气药、补阳药、补阴药、养心安神药、破血消癥药。④用药以寒性药及甘味、苦味、辛味药居多。⑤药物关联规则显示,使用频率较高的药对有合欢皮-首乌藤、百合-首乌藤、百合-合欢皮、知母-百合等,使用频率较高的3味药药组有合欢皮-首乌藤-百合、百合-首乌藤-知母等,使用频率较高的4味药药组有百合-合欢皮-首乌藤-知母。⑥聚类分析共得出14类药物,结合频数分析结果,得出刘胜教授治疗三阴性乳腺癌的核心用药为白术、茯苓、石见穿、党参、莪术、龙葵、淫羊藿;结合关联规则结果,得出刘胜教授治疗三阴性乳腺癌兼症的常用药对有首乌藤-合欢皮、百合-知母、苍术-厚朴、半夏-陈皮等。,结论,2,刘胜教授治疗三阴性乳腺癌以健脾益肾、化痰祛瘀、解毒熄风为治法,主证与兼症同治。
Objective,2,To analyze and summarize Professor Liu Sheng’s medication principles in the treatment of triple negative breast cancer (TNBC) based on data mining technology.,Methods,2,The medical records and prescriptions for the treatment of TNBC from Professor Liu Sheng’s outpatient clinic were collected to establish a database. Excel 2010 was used for data mining and clustering, and statistical information on the use frequency and efficacy, four qi, five flavors, and meridian tropism of traditional Chinese herbal medicines (TCHMs) was obtained. IBM SPSS Modeler 14.1 software was used for modeling, and medicinal association rule analysis and symptom-medicine association rule analysis were performed with Apriori algorithm. IBM SPSS 21.0 statistical software was used for cluster analysis to obtain core medications.,Results,2,①A total of 66 patients were included, involving 1,000 prescriptions and 252 TCHMs. ②The more frequently used TCHMs were those that enter the liver, spleen, lung, stomach, and kidney meridians. TCHMs with a use frequency over 50% were Atractylodis Macrocephalae Rhizoma, Poria, Salvia chinensis Benth, Codonopsis Radix, Curcumae Rhizoma, Solanum nigrum L., Epimedii Folium, Scutellariae Barbatae Herba, Polygoni Multiflori Caulis, Albiziae Cortex, and Lilii Bulbus. ③According to the efficacy classification of TCHMs, the top 6 in order of use frequency were heat-clearing and detoxifying medicinals, qi-tonifying medicinals, yang-tonifying medicinals, yin-tonifying medicinals, heart-nourishing and mind-tranquilizing medicinals, and blood-activating and mass-removing medicinals. ④The applied TCHMs were mostly cold in property and sweet, bitter and pungent in flavor. ⑤The medicinal association rules showed: the more frequently used medicinal pairs were Albiziae Cortex-Polygoni Multiflori Caulis, Lilii Bulbus-Polygoni Multiflori Caulis, Lilii Bulbus-Albiziae Cortex, and Anemarrhenae Rhizoma-Lilii Bulbus; the more frequently used medicinal groups of 3 TCHMs were Albiziae Cortex-Polygoni Multiflori Caulis-Lilii Bulbus, and Lilii Bulbus-Polygoni Multiflori Caulis-Anemarrhenae Rhizoma; the more frequently used medicinal groups of 4 TCHMs were Lilii Bulbus-Albiziae Cortex-Polygoni Multiflori Caulis-Anemarrhenae Rhizoma. ⑥A total of 14 medicinal categories were obtained by cluster analysis. Combined with the results of frequency analysis, the core TCHMs used by Professor Liu Sheng for the treatment of TNBC were Atractylodis Macrocephalae Rhizoma, Poria, Salvia chinensis Benth, Codonopsis Radix, Curcumae Rhizoma, Solanum nigrum L. and Epimedii Folium. The results of association rules showed that the common medicinal pairs used by Professor Liu Sheng for the treatment of concurrent symptoms of TNBC were Polygoni Multiflori Caulis-Albiziae Cortex, Lilii Bulbus-Anemarrhenae Rhizoma, Atractylodis Rhizoma-Magnoliae Officinalis Cortex, and Pinelliae Rhizoma-Citri Reticulatae Pericarpium.,Conclusion,2,Professor Liu Sheng treats TNBC by strengthening the spleen and supplementing kidney, resolving phlegm and eliminating blood stasis, removing toxins and extinguishing wind, and he treats both primary and concurrent syndromes simultaneously.
三阴性乳腺癌数据挖掘中药研究刘胜
triple negative breast cancerdata miningresearoh of traditinal Chinese herbal medicineLiu Sheng
CHEN W Q, ZHENG R S, ZHANG S W, et al. Cancer incidence and mortality in China in 2013: an analysis based on urbanization level[J]. Chin J Cancer Res, 2017, 29(1): 1-10.
FOULKES W D, SMITH I E, REIS-FILHO J S. Triple-negative breast cancer[J]. N Engl J Med, 2010, 363(20): 1938-1948.
QIU J D, XUE X Y, LI R, et al. Clinicopathological features and prognosis of triple-negative breast cancer: a comparison between younger (<60) and elderly (≥60) patients[J]. Eur J Cancer Care, 2016, 25(6): 1065-1075.
QIU J D, XUE X Y, HU C, et al. Comparison of clinicopathological features and prognosis in triple-vegative and non-triple negative breast cancer[J]. J Cancer, 2016, 7(2): 167-173.
YIN W J, LU J S, DI G H, et al. Clinico pathological features of the triple-negative tumors in Chinese breast cancer patients[J]. Breast Cancer Res Treat, 2009, 115(2): 325-333.
LIN C, CHEN S Y, KUO S J, et al. A 10-year follow-up of triple-negative breast cancer patients in Taiwan[J]. Jpn J Clin Oncol, 2012,42(3): 161-167.
刘胜,花永强,孙霃平,等. 试论乳腺癌痰毒瘀结病机的理论基础与临床应用[J]. 中西医结合学报,2007, 5(2): 122-125.
张帅,刘胜. 从“风痰瘀毒”论治三阴性乳腺癌[J]. 中国中医基础医学杂志,2018, 24(1): 31-33.
刘胜,孙霃平,花永强,等. 试论“治未病”思想在乳腺癌术后抗复发转移治疗中的应用[J]. 上海中医药大学学报,2008, 22(6): 3-6.
高学敏. 中药学[M]. 北京:中国中医药出版社,2010.
国家中医药管理局《中华本草》编委会. 中华本草[M]. 上海:上海科学技术出版社,2005.
薛薇,陈欢歌. Clementine 数据挖掘方法及应用[M]. 北京:电子工业出版社,2010: 249-251.
0
浏览量
301
下载量
0
CSCD
2
CNKI被引量
关联资源
相关文章
相关作者
相关机构