
浏览全部资源
扫码关注微信
1.北京交通大学(北京 100044)
2.湖北省中医院(湖北 武汉 430061)
3.天津天士力数智中医药科技有限公司(天津 300410)
4.河南中医药大学第一附属医院(河南 郑州 450099)
5.中国中医科学院广安门医院(北京 100053)
6.中国中医科学院(北京 100007)
鄢灯莹,女,博士研究生,主要从事中医人工智能、中医知识图谱方向的研究工作;*
刘保延,研究员,博士研究生导师;E-mail:liuby5505@139.com
周雪忠,教授,博士研究生导师;E-mail: xzzhou@bjtu.edu.cn
收稿:2025-03-14,
纸质出版:2025-10-10
移动端阅览
鄢灯莹,郑琪光,常凯,等.构建真实世界中医药临床研究人工智能技术体系:重要价值、研究问题与发展方向[J].上海中医药杂志,2025,59(10):1-8.
YAN Dengying,ZHENG Qiguang,CHANG Kai,et al.Constructing an artificial intelligence technology system for real⁃world traditional Chinese medicine clinical study: key values, research issues, and development directions[J].Shanghai Journal of Traditional Chinese Medicine,2025,59(10):1-8.
鄢灯莹,郑琪光,常凯,等.构建真实世界中医药临床研究人工智能技术体系:重要价值、研究问题与发展方向[J].上海中医药杂志,2025,59(10):1-8. DOI: 10.16305/j.1007-1334.2025.z20250314005.
YAN Dengying,ZHENG Qiguang,CHANG Kai,et al.Constructing an artificial intelligence technology system for real⁃world traditional Chinese medicine clinical study: key values, research issues, and development directions[J].Shanghai Journal of Traditional Chinese Medicine,2025,59(10):1-8. DOI: 10.16305/j.1007-1334.2025.z20250314005.
在人工智能时代,真实世界研究已经成为以临床大数据为基础,以人工智能技术为主要支撑的热点医学研究方向。鉴于辨证论治个体诊疗的临床特色模式,开展基于人工智能技术的真实世界中医药临床研究对中医诊疗能力提升、基础理论创新和新药研发等都具有举足轻重的作用与价值。通过分析人工智能以数据与知识并重的技术体系特色,探讨人工智能时代开展真实世界中医药临床研究的特殊重要价值。同时,结合团队研究实践与相关领域进展,阐述基于人工智能开展真实世界中医药临床研究的关键问题、技术挑战和发展趋势,以期融合人工智能技术重构中医药临床研究现代技术体系,为建立中医药特色的高质量临床研究体系提供思路与方向。
In the era of artificial intelligence (AI), real-world study has become a prominent medical research direction based on clinical big data and supported primarily by AI technologies. Given the clinical characteristics of traditional Chinese medicine (TCM) in individual diagnosis and treatment through syndrome differentiation, conducting real-world TCM clinical study based on AI technology plays a crucial role and holds significant value in improving TCM diagnostic and therapeutic capabilities, innovating basic theories, and advancing new drug development. This paper analyzes the distinctive features of AI technologies, which emphasize both data and knowledge, and explores the unique and significant value of conducting real-world TCM clinical study in the era of AI. Additionally, combining team research practices and advancements in related fields, this paper discusses the key issues, technical challenges, and development trends of conducting real-world TCM clinical study using AI. The aim is to integrate AI technologies to reconstruct the modern technical system of TCM clinical study and provide ideas and directions for establishing a high-quality clinical study system with the characteristics of TCM.
ROUMELIOTIS K , TSELIKAS N . ChatGPT and Open-AI models: A preliminary review [J]. Future Internet , 2023 , 15 ( 6 ): 192 - 205 .
TEAM G , ANIL R , BORGEAUD S , et al . Gemini: A family of highly capable multimodal models [J/OL]. arXiv , 2023 [ 2025-01-10 ]. http://arxiv.org/abs/2312.11805 http://arxiv.org/abs/2312.11805 .
GUO D , ZHU Q , YANG D , et al . DeepSeek-coder: When the large language model meets programming-the rise of code intelligence [J/OL]. arXiv , 2024 [ 2025-01-10 ]. https://arxiv.org/abs/2401.14196 https://arxiv.org/abs/2401.14196 .
ZHANG C , LU Y . Study on artificial intelligence: the state of the art and future prospects [J]. J Ind Inf Integr , 2021 , 23 : 100224 .
VAN MELLE W . MYCIN: a knowledge-based consultation program for infectious disease diagnosis [J]. Int J Man Mach Stud , 1978 , 10 ( 3 ): 313 - 322 .
STRICKLAND E . IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care [J]. IEEE Spectr , 2019 , 56 ( 4 ): 24 - 31 .
MANIACI A , LAVALLE S , GAGLIANO C , et al . The integration of radiomics and artificial intelligence in modern medicine [J]. Life , 2024 , 14 ( 10 ): 1248 .
STEINFELDT J , BUERGEL T , LOOCK L , et al . Neural network-based integration of polygenic and clinical information: development and validation of a prediction model for 10-year risk of major adverse cardiac events in the UK biobank cohort [J]. Lancet Digit Health , 2022 , 4 ( 2 ): e84 - e94 .
JIN Q , WANG Z , FLOUDAS C S , et al . Matching patients to clinical trials with large language models [J]. Nat Commun , 2024 , 15 ( 1 ): 9074 .
HOPKINS A L . Network pharmacology: the next paradigm in drug discovery [J]. Nat Chem Biol , 2008 , 4 ( 11 ): 682 - 690 .
JUMPER J , EVANS R , PRITZEL A , et al . Highly accurate protein structure prediction with AlphaFold [J]. Nature , 2021 , 596 ( 7873 ): 583 - 589 .
LU Z , PENG Y , COHEN T , et al . Large language models in biomedicine and health: Current research landscape and future directions [J]. J Am Med Inform Assoc , 2024 , 31 ( 9 ): 1801 - 1811 .
SARKAR R , SAMUEL D , DUNBAR L , et al . 5 years of The Lancet Digital Health [J]. Lancet Digit Health , 2024 , 6 ( 5 ): e299 .
MANRAI A K , BEAM A L , KOHANE I S . What we want to publish at NEJM AI [J]. NEJM AI , 2024 , 1 ( 2 ): AIe2300304 .
刘保延 , 谢雁鸣 , 胡镜清 . 中医药学现代个体诊疗体系建立的构想与研究 [J]. 世界科学技术 , 2003 , 8 ( 1 ): 1 - 5,80 .
周雪忠 , 王世华 , 张迪 , 等 . 构建中医药特色真实世界临床研究新模式的实践与思考 [J]. 科技导报 , 2023 , 41 ( 14 ): 22 - 31 .
DANG A . Real-world evidence: a primer [J]. Pharm Med , 2023 , 37 ( 1 ): 25 - 36 .
ZOU K , BERGER M . Real-world data and real-world evidence in healthcare in the United States and Europe Union [J]. Bioengineering , 2024 , 11 ( 8 ): 784 .
国家药监局药品审评中心 . 推动真实世界证据指导原则体系构建与国际化 [N]. 中国医药报 , 2024-11-21 (2).
MAKADY A , DE BOER A , HILLEGE H , et al . What is real-world data? A review of definitions based on literature and stakeholder interviews [J]. Value Health , 2017 , 20 ( 7 ): 858 - 865 .
DAGAN N , BARDA N , KEPTEN E , et al . BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting [J]. N Engl J Med , 2021 , 384 ( 15 ): 1412 - 1423 .
周雪忠 , 刘保延 , 姚乃礼 , 等 . 中医临床数据库及挖掘分析平台的研究与应用探讨 [J]. 世界科学技术-中医药现代化 , 2007 , 12 ( 4 ): 74 - 80 .
郇家铭 , 王宁 , 李运伦 , 等 . 全国名中医丁书文益气活血解毒法治疗心房颤动的处方用药规律挖掘 [J]. 世界科学技术-中医药现代化 , 2020 , 24 ( 12 ): 4094 - 4102 .
刘保延 . 真实世界的中医临床科研范式 [J]. 中医杂志 , 2013 , 54 ( 6 ): 451 - 455 .
XU N , ZHONG K , YU H , et al . Add-on Chinese medicine for hospitalized chronic obstructive pulmonary disease (CHOP): A cohort study of hospital registry [J]. Phytomedicine , 2023 , 109 : 154586 .
SHU Z , CHANG K , ZHOU Y , et al . Add-on Chinese medicine for Coronavirus Disease 2019 (ACCORD): A retrospective cohort study of hospital registries [J]. Am J Chin Med , 2021 , 49 ( 3 ): 543 - 575 .
XIONG Z , LU Y , HE L , et al . Efficacy of Chinese medicine treatment based on syndrome differentiation for primary insomnia: A randomized placebo controlled triple-blinded trial [J]. Chin J Integr Med , 2024 , 30 ( 10 ): 867 - 876 .
刘保延 , 何丽云 , 周雪忠 , 等 . 辨证论治临床疗效评价的新思路、新方法与新策略 [J]. 中医杂志 , 2020 , 61 ( 2 ): 93 - 97 .
SHU Z , LIU W , WU H , et al . Symptom-based network classification identifies distinct clinical subgroups of liver diseases with common molecular pathways [J]. Comput Methods Programs Biomed , 2019 , 174 : 41 - 50 .
王庆颖 , 张晓春 , 侯超 . 基于真实世界证据的扶正清毒法治疗胃癌疗效评价及其用药规律分析 [J]. 中国中西医结合消化杂志 , 2024 , 32 ( 3 ): 226 - 232 .
卢存存 , 陈子佳 , 王志飞 . 基于真实世界数据的观察性因果推断研究新框架(目标试验模拟)及其在中医药领域中的应用展望 [J]. 协和医学杂志 , 2024 , 15 ( 2 ): 422 - 428 .
刘保延 . 有关辨证论治临床评价若干问题的思考 [J]. 中医杂志 , 2007 , 48 ( 1 ): 12 - 14 .
ZHOU X , CHEN S , LIU B , et al . Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support [J]. Artif Intell Med , 2010 , 48 ( 2-3 ): 139 - 152 .
WANG Y , SUN J , SUN R , et al . Treating chronic atrophic gastritis: identifying sub-population based on real-world TCM electronic medical records [J]. Front Pharmacol , 2024 , 15 : 1444733 .
GAN X , SHU Z , WANG X , et al . Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine [J]. Sci Adv , 2023 , 9 ( 43 ): eadh0215 .
刘保延 . 智能科研范式推进中医药高质量、高效发展 [J]. 科技导报 , 2024 , 42 ( 21 ): 6 - 12 .
XU F , CUI W , KONG Q , et al . A real-world evidence study for distribution of traditional Chinese medicine syndrome and its elements on respiratory disease [J]. Evid Based Complement Alternat Med , 2018 , 2018 : 8305892 .
REN X , GUO Y , WANG H , et al . The intelligent experience inheritance system for traditional Chinese medicine [J]. J Evid Based Med , 2023 , 16 ( 1 ): 91 - 100 .
符宇 , 邵明义 , 燕树勋 , 等 . 真实世界研究与中医临床疗效评价 [J]. 中医杂志 , 2019 , 60 ( 7 ): 546 - 550 .
YANG Y , ZHOU X , GAO S , et al . Evaluation of electronic healthcare databases for post-marketing drug safety surveillance and pharmacoepidemiology in China [J]. Drug Saf , 2018 , 41 ( 1 ): 125 - 137 .
穆晓君 , 吴桐 , 加雄伟 , 等 . 大模型时代:高质量数据的构建、治理与未来展望 [J]. 信息通信技术 , 2024 , 18 ( 3 ): 63 - 68 .
WILCOX L , BREWER R , DIAZ F . AI consent futures: A case study on voice data collection with clinicians [J]. Proc ACM Hum Comput Interact , 2023 , 7 (CSCW 2 ): 1 - 30 .
CHEN J , ZHANG Q . DeepSeek reshaping healthcare in China's tertiary hospitals [J/OL]. arXiv , 2025 [ 2025-01-10 ]. https://arxiv.org/abs/2502.16732 https://arxiv.org/abs/2502.16732 .
SEBA A , CHIKH , NOUICER A , et al . Medical big data warehouse: architecture and system design, a case study: improving healthcare resources distribution [J]. J Med Syst , 2018 , 42 ( 4 ): 59 .
XUE J , FENG Z , ZENG L , et al . Soul: An OCTA dataset based on Human Machine Collaborative Annotation Framework [J]. Sci Data , 2024 , 11 ( 1 ): 1 - 9 .
HAO T , HUANG Z , LIANG L , et al . Health natural language processing: Methodology development and applications [J]. JMIR Med Inform , 2021 , 9 ( 10 ): e23898 .
WU X , DUAN J , PAN Y , et al . Medical knowledge graph: Data sources, construction, reasoning, and applications [J]. Big Data Mining Analytics , 2023 , 6 ( 2 ): 201 - 217 .
CHEN X , JIA S , XIANG Y . A review: Knowledge reasoning over knowledge graph [J]. Expert Syst Appl , 2020 , 141 : 112948 .
CHANDAK P , HUANG K , ZITNIK M . Building a knowledge graph to enable precision medicine [J]. Sci Data , 2023 , 10 ( 1 ): 67 .
YANG P , WANG H , HUANG Y , et al . LMKG: A large-scale and multi-source medical knowledge graph for intelligent medicine applications [J]. Knowl Based Syst , 2024 , 284 : 111323 .
ZHOU X , WU Z , YIN A , et al . Ontology development for unified traditional Chinese medical language system [J]. Artif Intell Med , 2004 , 32 ( 1 ): 15 - 27 .
YU T , CUI M , JIA L . Towards a TCM domain ontology: Standardization, ontology engineering, and applications [C]// proceedings of 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI) . Shenyang : BMEI , 2015 : 500 - 504 .
YU T , LI J , YU Q , et al . Knowledge graph for TCM health preservation: Design, construction, and applications [J]. Artif Intell Med , 2017 , 77 : 48 - 52 .
WU Y , ZHANG F , YANG K , et al . SymMap: an integrative database of traditional Chinese medicine enhanced by symptom mapping [J]. Nucleic Acids Res , 2019 , 47 ( D1 ): D1110 - D1117 .
SHU Z , HUA R , YAN D , et al . ISPO: an integrated ontology of symptom phenotypes for semantic integration of traditional Chinese medical data [J]. Methods Inf Med , 2025 , 63 ( 5-6 ): 164 - 175 .
PENG C , XIA F , NASERIPARSA M , et al . Knowledge graphs: opportunities and challenges [J]. Artif Intell Rev , 2023 , 56 ( 11 ): 13071 - 13102 .
MILLER G A . WordNet: a lexical database for English [J]. Commun ACM , 1995 , 38 ( 11 ): 39 - 41 .
BODENREIDER O . The Unified Medical Language System (UMLS): integrating biomedical terminology [J]. Nucleic Acids Res , 2004 , 32 ( suppl_1 ): D267 - D270 .
VIDAL M E , CHUDASAMA Y , HUANG H , et al . Integrating knowledge graphs with symbolic AI: the path to interpretable hybrid AI systems in medicine [J]. J Web Semant , 2025 , 84 : 100856 .
GHASSEMI M , NAUMANN T , SCHULAM P , et al . A review of challenges and opportunities in machine learning for health [J]. AMIA Jt Summits Transl Sci Proc , 2020 , 2020 : 191 - 200 .
HASAN U , GANI M O . Kcrl: A prior knowledge based causal discovery framework with reinforcement learning [C]// proceedings of Machine Learning for Healthcare Conference 2022 . New York : PMLR , 2022 : 691 - 714 .
AMANN J , BLASIMME A , VAYENA E , et al . Explainability for artificial intelligence in healthcare: a multidisciplinary perspective [J]. BMC Med Inform Decis Mak , 2020 , 20 ( 1 ): 310 .
ESMAEILI P , ROSHANRAVAN N , GHAFFARI S , et al . Unraveling atherosclerotic cardiovascular disease risk factors through conditional probability analysis with Bayesian networks: insights from the AZAR cohort study [J]. Sci Rep , 2024 , 14 ( 1 ): 4361 .
BONOVAS S , PIOVANI D . Simpson's paradox in clinical research: a cautionary tale [J]. J Clin Med , 2023 , 12 ( 4 ): 1633 .
苗旺 , 刘春辰 , 耿直 . 因果推断的统计方法 [J]. 中国科学:数学 , 2018 , 48 ( 12 ): 1753 - 1778 .
SCHÖLKOPF B , LOCATELLO F , BAUER S , et al . Toward causal representation learning [J]. Proc IEEE , 2021 , 109 ( 5 ): 612 - 634 .
KUANG K , LI L , GEN Z , et al . Causal inference [J]. Engineering , 2020 , 6 ( 3 ): 253 - 263 .
RICHENS J G , LEE C M , JOHRI S . Improving the accuracy of medical diagnosis with causal machine learning [J]. Nat Commun , 2020 , 11 ( 1 ): 3923 .
CHENG F , KOVÁCS I A , BARABÁSI A L . Network-based prediction of drug combinations [J]. Nat Commun , 2019 , 10 ( 1 ): 1197 .
CHU X , WU S , SUN B , et al . Data-driven quantification and intelligent decision-making in traditional Chinese medicine: a review [J]. Int J Mach Learn Cybern , 2024 , 15 ( 8 ): 3455 - 3470 .
XIAN Y , FU Z , MUTHUKRISHNAN S , et al . Reinforcement knowledge graph reasoning for explainable recommendation [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval . New York : Association for Computing Machinery , 2019 : 285 - 294 .
QIAN J , SHAO X , BAO H , et al . Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution [J]. Nat Commun , 2025 , 16 ( 1 ): 1693 .
SONG Z , CHEN G , CHEN Y . AI empowering traditional Chinese medicine? [J]. Chem Sci , 2024 , 15 ( 41 ): 16844 - 16886 .
BARABÁSI A L , GULBAHCE N , LOSCALZO J . Network medicine: a network-based approach to human disease [J]. Nat Rev Genet , 2011 , 12 ( 1 ): 56 - 68 .
LI S , ZHANG B . Traditional Chinese medicine network pharmacology: theory, methodology and application [J]. Chin J Nat Med , 2013 , 11 ( 2 ): 110 - 120 .
ZHOU X , MENCHE J , BARABÁSI A L , et al . Human symptoms–disease network [J]. Nat Commun , 2014 , 5 ( 1 ): 4212 .
WANG X , WANG Z , ZHENG J , et al . TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches [J]. Chin J Nat Med , 2021 , 19 ( 1 ): 1 - 11 .
宗相卿 , 代林田 . 微机应用关幼波肝病诊疗程序196例分析 [J]. 辽宁中医杂志 , 1992 , 23 ( 6 ): 26 - 27 .
ZHANG N L , YUAN S , CHEN T , et al . Latent tree models and diagnosis in traditional Chinese medicine [J]. Artif Intell Med , 2008 , 42 ( 3 ): 229 - 245 .
TENG S , FU A , LU W , et al . TCM syndrome classification using graph convolutional network [J]. Eur J Integr Med , 2023 , 62 : 102288 .
DONG X , ZHAO C , SONG X , et al . PresRecST: a novel herbal prescription recommendation algorithm for real-world patients with integration of syndrome differentiation and treatment planning [J]. J Am Med Inform Assoc , 2024 , 31 ( 6 ): 1268 - 1279 .
LIU L , YANG X , LEI J , et al . A survey on medical large language models: technology, application, trustworthiness, and future directions [J/OL]. arXiv , 2024 [ 2025-01-10 ]. https://arxiv.org/pdf/2406.03712v2 https://arxiv.org/pdf/2406.03712v2 .
TIAN H , YANG K , DONG X , et al . TCMLLM-PR: evaluation of large language models for prescription recommendation in traditional Chinese medicine [J]. Digital Chin Med , 2024 , 7 ( 4 ): 343 - 355 .
HUA R , DONG X , WEI Y , et al . Lingdan: enhancing encoding of traditional Chinese medicine knowledge for clinical reasoning tasks with large language models [J]. J Am Med Inform Assoc , 2024 , 31 ( 9 ): 2019 - 2029 .
DONG X , ZHENG Y , SHU Z , et al . TCMPR: TCM prescription recommendation based on subnetwork term mapping and deep learning [J]. Biomed Res Int , 2022 , 2022 : 4845726 .
HAGER P , JUNGMANN F , HOLLAND R , et al . Evaluation and mitigation of the limitations of large language models in clinical decision-making [J]. Nat Med , 2024 , 30 ( 9 ): 2613 - 2622 .
TONEKABONI S , JOSHI S , MCCRADDEN M D , et al . What clinicians want: Contextualizing explainable machine learning for clinical end use [C]// proceedings of Machine Learning for Healthcare Conference 2019 . New York : PMLR , 2019 : 359 - 380 .
LEE M H , CHEW C J . Understanding the effect of counterfactual explanations on trust and reliance on AI for human-AI collaborative clinical decision making [J]. Proc ACM Hum Comput Interact , 2023 , 7 ( 2 ): 1 - 22 .
SUTTON R T , PINCOCK D , BAUMGART D , et al . An overview of clinical decision support systems: benefits, risks, and strategies for success [J]. NPJ Digit Med , 2020 , 3 ( 1 ): 17 .
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构
沪公网安备 31011502015228号