浏览全部资源
扫码关注微信
1.北京中医药大学深圳医院(龙岗)脑病科(广东 深圳 518172)
2.北京中医药大学第五临床医学院(深圳医院)(广东 深圳 518172)
3.北京中医药大学深圳医院(龙岗)临床心理科(广东 深圳 518172)
4.北京中医药大学东方医院脑病科(北京 100078)
李红培,女,博士研究生,主要从事中医脑病的临床与基础研究工作
韩振蕴,主任医师,教授,博士研究生导师; E-mail:tohanzhenyun@sina.com
收稿日期:2024-10-08,
纸质出版日期:2025-07-10
移动端阅览
李红培,刘龙,胡文悦,等.基于中医“司外揣内”法探讨人工智能诊断抑郁症的可行性[J].上海中医药杂志,2025,59(7):11-16.
LI Hongpei,LIU Long,HU Wenyue,et al.Exploring feasibility of artificial intelligence in diagnosing depressive disorder based on traditional Chinese medicine principle of "governing exterior to infer interior"[J].Shanghai Journal of Traditional Chinese Medicine,2025,59(7):11-16.
李红培,刘龙,胡文悦,等.基于中医“司外揣内”法探讨人工智能诊断抑郁症的可行性[J].上海中医药杂志,2025,59(7):11-16. DOI: 10.16305/j.1007-1334.2025.z20241008001.
LI Hongpei,LIU Long,HU Wenyue,et al.Exploring feasibility of artificial intelligence in diagnosing depressive disorder based on traditional Chinese medicine principle of "governing exterior to infer interior"[J].Shanghai Journal of Traditional Chinese Medicine,2025,59(7):11-16. DOI: 10.16305/j.1007-1334.2025.z20241008001.
作为一种具有高患病率、高致残率、高自杀率及高复发率的慢性精神疾病,抑郁症的发病机制尚不明确,也缺乏客观诊断指标,确诊仍依赖精神专科医生一对一判断,不仅耗时,还需匹配大量的医疗资源。同时,由于抑郁症早期症状的不典型以及患者在专科就医可能感到的“病耻感”,导致患者更倾向于在非专科就诊,容易造成病情延误。中医“司外揣内”法从整体出发,通过望神(目)、面、舌和问不适、闻声音及切脉搏等多种方式与患者互动,来推断其内在心理认知变化。这种诊断方法具备无创易操作、动态多维度、省时又经济的诊断优势,更易获得患者配合。随着人工智能技术的快速发展,通过医工结合的跨学科合作方式,可以对抑郁症体现在外的信息进行标准化采集和客观化分析,有望减少人工诊断带来的主观影响,提高抑郁症早期筛查和诊断效率。
Depressive disorder (DD) is a chronic psychiatric disorder characterized with high morbidity, disability, suicide rates, and recurrence, yet its pathogenesis remains unclear, and objective diagnostic indicators are lacking. Diagnosis confirmation still largely relies on one-on-one evaluations by psychiatric specialists, which is time-consuming and requires substantial medical resources. Furthermore, due to the atypical early symptoms of DD, coupled with the stigma associated with seeking psychiatric care, patients tend to consult non-specialists, which may increase the risk of delayed diagnosis and treatment. Traditional Chinese medicine (TCM) diagnostic principle of "governing exterior to infer interior" adopts a holistic approach, interacting with patients through inspecting spirit (eyes), facial expressions and tongue, inquiring about discomfort, listening to the voice, and taking the pulse to infer patients' internal psychological and cognitive changes. This diagnostic approach is non-invasive, easy to perform, dynamic, multi-dimensional, time-efficient, and cost-effective, making it more acceptable to patients. With the rapid advancement of artificial intelligence, interdisciplinary collaborations between medicine and engineering can standardize the collection and objective analysis of outward manifestations of DD, potentially reducing subjective biases in manual diagnosis and improving the efficiency of early screening and diagnosis.
RIDLEY M , RAO G , SCHILBACH F , et al . Poverty, depression, and anxiety: causal evidence and mechanisms [J]. Science , 2020 , 370 ( 6522 ): eaay0214 .
HERRMAN H , PATEL V , KIELING C , et al . Time for united action on depression: a lancet-world psychiatric association commission [J]. Lancet , 2022 , 399 ( 10328 ): 957 - 1022 .
中华医学会行为医学分会 , 中华医学会行为医学分会认知应对治疗学组 . 抑郁症治疗与管理的专家推荐意见(2022年) [J]. 中华行为医学与脑科学杂志 , 2023 , 32 ( 3 ): 193 - 202 .
LU J , XU X F , HUANG Y Q , et al . Prevalence of depressive disorders and treatment in China: a cross-sectional epidemiological study [J]. Lancet Psychiatry , 2021 , 8 ( 11 ): 981 - 990 .
RAO W W , XU D D , CAO X L , et al . Prevalence of depressive symptoms in children and adolescents in China: a meta-analysis of observational studies [J]. Psychiatry Res , 2019 , 272 : 790 - 796 .
BABA H , KITO S , NUKARIYA K , et al . Guidelines for diagnosis and treatment of depression in older adults: a report from the Japanese society of mood disorders [J]. Psychiatry Clin Neurosci , 2022 , 76 ( 6 ): 222 - 234 .
乔世杰 , 王章林 , 付超 , 等 . 中医诊断基本原理中的象思维运用 [J]. 中医学报 , 2022 , 37 ( 11 ): 2261 - 2264 .
罗思言 , 王心舟 , 饶向荣 . 人工智能在中医诊断中的应用进展 [J]. 中国医学物理学杂志 , 2022 , 39 ( 5 ): 647 - 654 .
PAMPOUCHIDOU A , PEDIADITIS M , KAZANTZAKI E , et al . Automated facial video-based recognition of depression and anxiety symptom severity: cross-corpus validation [J]. Mach Vis Appl , 2020 , 31 ( 4 ): 1 - 19 .
HE L , CHAN J C W , WANG Z M . Automatic depression recognition using CNN with attention mechanism from videos [J]. Neurocomputing , 2021 , 422 : 165 - 175 .
WANG X , LIU J W , WU C Y , et al . Artificial intelligence in tongue diagnosis: using deep convolutional neural network for recognizing unhealthy tongue with tooth-mark [J]. Comput Struct Biotechnol J , 2020 , 18 : 973 - 980 .
YUAN X Y , LIU Z Y , CHEN Q Q , et al . Combining informative regions and clips for detecting depression from facial expressions [J]. Cognit Comput , 2023 , 15 ( 6 ): 1961 - 1972 .
徐雍钦 , 杨晶东 , 姜泉 , 等 . 基于多特征融合的中医症候舌象分类方法研究 [J]. 智能计算机与应用 , 2022 , 12 ( 7 ): 25 - 34 .
崔骥 , 许家佗 . 人工智能信息技术在中医四诊现代化研究中的应用现状与展望 [J]. 上海中医药杂志 , 2025 , 59 ( 1 ): 7 - 12 .
ZHAO J , SU W , JIA J , et al . Research on depression detection algorithm combine acoustic rhythm with sparse face recognition [J]. Cluster Comput , 2019 , 22 : 7873 - 7884 .
赵小明 , 谌自强 , 张石清 . 基于跨模态特征重构与解耦网络的多模态抑郁症检测方法 [J]. 计算机应用研究 , 2025 , 42 ( 1 ): 236 - 241 .
王姝予 . 基于机器视觉的舌脉客观化技术构建抑郁症辨证模型 [D]. 成都 : 成都中医药大学 , 2024 .
SILVA-COSTA L C , CARLSON P T , GUEST P C , et al . Proteomic markers for depression [J]. Adv Exp Med Biol , 2019 , 1118 : 191 - 206 .
刘振 , 周宁 , 刘通 , 等 . 基于代谢组学的抑郁症研究进展 [J]. 中国病理生理杂志 , 2020 , 36 ( 12 ): 2264 - 2275 .
祁娜 , 冯媛 , 王刚 . 抑郁症客观评估方法的研究进展 [J]. 神经疾病与精神卫生 , 2020 , 20 ( 5 ): 341 - 346 .
DEMCHENKO I , DESAI N , IWASA S N , et al . Manipulating facial musculature with functional electrical stimulation as an intervention for major depressive disorder: a focused search of literature for a proposal [J]. J Neuroeng Rehabil , 2023 , 20 ( 1 ): 64 .
ZHOU X Z , JIN K , SHANG Y Y , et al . Visually interpretable representation learning for depression recognition from facial images [J]. IEEE Trans Affect Comput , 2020 , 11 ( 3 ): 542 - 552 .
ZHANG D , LIU X , XU L H , et al . Effective differentiation between depressed patients and controls using discriminative eye movement features [J]. J Affect Disord , 2022 , 307 : 237 - 243 .
GIOIA F , NARDELLI M , SCILINGO E P , et al . Autonomic regulation of facial temperature during stress: a cross-mapping analysis [J]. Sensors (Basel) , 2023 , 23 ( 14 ): 6403 .
杨娜婷 , 周旋 , 马庆宇 , 等 . 抑郁症肝郁脾虚证患者面诊客观参数分析 [J]. 中华中医药杂志 , 2023 , 38 ( 8 ): 3836 - 3839 .
杨娜婷 , 周旋 , 马庆宇 , 等 . 抑郁症肝郁脾虚证舌诊客观参数分析及应用探索 [J]. 中华中医药杂志 , 2023 , 38 ( 3 ): 1269 - 1273 .
刘素彤 , 张丽慧 , 顾亚娇 , 等 . 赵文霞教授基于“肝胃不和-舌象变化”诊治功能性消化不良伴抑郁状态的经验 [J]. 中国中西医结合消化杂志 , 2023 , 31 ( 1 ): 13 - 15 .
FU H L , ZHUANG Z H , WANG Y , et al . Cross-corpus speech emotion recognition based on multi-task learning and subdomain adaptation [J]. Entropy (Basel) , 2023 , 25 ( 1 ): 124 .
WANG J Y , ZHANG L , LIU T L , et al . Acoustic differences between healthy and depressed people: a cross-situation study [J]. BMC Psychiatry , 2019 , 19 ( 1 ): 300 .
ALBUQUERQUE L , VALENTE A R S , TEIXEIRA A , et al . Association between acoustic speech features and non-severe levels of anxiety and depression symptoms across lifespan [J]. PLoS One , 2021 , 16 ( 4 ): e0248842 .
HIGUCHI M , NAKAMURA M , SHINOHARA S , et al . Detection of major depressive disorder based on a combination of voice features: an exploratory approach [J]. Int J Environ Res Public Health , 2022 , 19 ( 18 ): 11397 .
林景峰 . 基于多种生理信息与症状体征的抑郁症中医人工智能辨证方案建立 [D]. 北京 : 北京中医药大学 , 2021 .
刘丽莉 , 李明 , 罗晓兰 , 等 . 基于自然语言处理智能技术的中医术语研究文献计量分析 [J]. 上海中医药杂志 , 2024 , 58 ( 7 ): 1 - 6, 14 .
侯佳音 , 徐博 , 何萍 . 基于AI的诊前预问诊系统的设计与应用 [J]. 中国数字医学 , 2024 , 19 ( 7 ): 17 - 22 .
杜曾贞 , 唐东昕 , 解丹 . 智能问诊中基于深度神经网络的反问生成方法 [J]. 计算机应用 , 2022 , 42 ( 3 ): 867 - 873 .
李红岩 , 李灿 , 郎许锋 , 等 . 中医四诊智能化现状及关键技术探讨 [J]. 中医杂志 , 2022 , 63 ( 12 ): 1101 - 1108 .
宋雪阳 , 许朝霞 , 王寺晶 , 等 . 中医闻诊客观化临床应用研究概述 [J]. 中国中医药信息杂志 , 2019 , 26 ( 3 ): 141 - 144 .
MA J H , WANG P , CHEN H Y , et al . Highly sensitive and large-ranges strain sensor with a self-compensated two-order structure for human motion detection [J]. ACS Appl Mater Interfaces , 2019 , 11 ( 8 ): 8527 - 8536 .
沈睿 , 毛晓波 , 周熙 , 等 . 智能中医舌脉诊断手环 [J]. 电子设计工程 , 2022 , 30 ( 14 ): 156 - 160 .
王忆勤 . 中医诊断技术发展及四诊信息融合研究 [J]. 上海中医药大学学报 , 2019 , 33 ( 1 ): 1 - 7 .
LIU Y Y , LV Y X , XUE H B . Intelligent wearable wrist pulse detection system based on piezoelectric sensor array [J]. Sensors (Basel) , 2023 , 23 ( 2 ): 835 .
ZHAO Y L , SUN Q X , MEI S X , et al . Wearable multichannel-active pressurized pulse sensing platform [J]. Microsyst Nanoeng , 2024 , 10 : 77 .
GAVRILESCU M , VIZIREANU N . Predicting depression, anxiety, and stress levels from videos using the facial action coding system [J]. Sensors (Basel) , 2019 , 19 ( 17 ): 3693 .
刘豪 , 卓广平 , 乔俊福 , 等 . 基于领域情感词典与字词特征融合的中文抑郁症文本分类方法 [J]. 中北大学学报(自然科学版) , 2022 , 43 ( 6 ): 522 - 529 .
CHIONG R , BUDHI G S , DHAKAL S , et al . A textual-based featuring approach for depression detection using machine learning classifiers and social media texts [J]. Comput Biol Med , 2021 , 135 : 104499 .
SHIN D , CHO W I , PARK C H K , et al . Detection of minor and major depression through voice as a biomarker using machine learning [J]. J Clin Med , 2021 , 10 ( 14 ): 3046 .
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构