浏览全部资源
扫码关注微信
上海中医药大学中医学院(上海 201203)
崔骥,男,副教授,硕士研究生导师,主要从事中医诊断学及脉诊信息化研究工作
许家佗,教授,博士研究生导师;E-mail: xjt@fudan.edu.cn
纸质出版日期:2025-01-10,
收稿日期:2024-09-03,
移动端阅览
崔骥,许家佗.人工智能信息技术在中医四诊现代化研究中的应用现状与展望[J].上海中医药杂志,2025,59(1):7-12.
CUI Ji,XU Jiatuo.Application status quo and prospects of artificial intelligence and information technology for modernization of four diagnostic methods in traditional Chinese medicine[J].Shanghai Journal of Traditional Chinese Medicine,2025,59(1):7-12.
崔骥,许家佗.人工智能信息技术在中医四诊现代化研究中的应用现状与展望[J].上海中医药杂志,2025,59(1):7-12. DOI: 10.16305/j.1007-1334.2025.z20240903008.
CUI Ji,XU Jiatuo.Application status quo and prospects of artificial intelligence and information technology for modernization of four diagnostic methods in traditional Chinese medicine[J].Shanghai Journal of Traditional Chinese Medicine,2025,59(1):7-12. DOI: 10.16305/j.1007-1334.2025.z20240903008.
随着人工智能信息技术爆发式发展,其在中医领域的应用也逐渐普及。随着现代信息技术的发展,中医诊断学中的望、闻、问、切四诊技术逐渐客观化、标准化、信息化与智能化。借助人工智能、大数据、智能医疗器械等关键要素,提升中医四诊融合及诊断水平,并为中医学的发展注入新的活力,是中医诊断学尤其是四诊技术发展的必然趋势。梳理了近年来中医望诊、闻诊、问诊和切诊的智能化发展及四诊融合概况,以期为中医诊断学及中医现代化的发展提供必要的信息化与智能化发展思路。
With the bursting development of artificial intelligence (AI) and information technology, the integration of these technologies into traditional Chinese medicine (TCM) has become increasingly prevalent. As modern information technology progresses, the four diagnostic methods in TCM—inspection, auscultation and olfaction, inquiry, and palpation—are becoming increasingly objective, standardized, digitized, and intelligent. Leveraging key elements such as AI, big data, and smart medical devices to enhance the integration and diagnostic accuracy of the four diagnostic methods in TCM, and injecting new vitality into the development of TCM, is an inevitable trend in advancing TCM diagnostics, especially the four diagnostic methods. This paper reviews recent advancements in the intelligent transformation of inspection, auscultation and olfaction, inquiry, and pulse-taking in TCM, as well as the integration of these four diagnostic methods, with the aim of providing necessary insights into the informatization and modernization of TCM diagnostics.
中医诊断四诊融合人工智能中医现代化研究进展
traditional Chinese medicine diagnosticsfour-diagnostic-method integrationartificial intelligencetraditional Chinese medicine modernizationresearch progress
罗思言,王心舟,饶向荣.人工智能在中医诊断中的应用进展[J]. 中国医学物理学杂志,2022, 39(5): 647-654.
CHU H, JI Y, ZHU D, et al. Artificial intelligence in tongue image recognition[J]. Int J Softw Sci Comput Intell, 2023, 15(1): 1-25.
王奕然,张新峰.基于AdaBoost级联框架的舌色分类[J]. 北京生物医学工程,2020, 39(1): 8-14.
LIU W, CAO J M, LIU B , et al. Tongue image segmentation and tongue color classification based on deep learning[J]. Digital Chin Med, 2022, 5(3): 253-263.
卓力,李艳萍,张辉,等.基于区域注意力机制的有噪样本下中医舌色分类算法研究[J]. 世界科学技术-中医药现代化,2023, 25(8): 2873-2882.
LI C, ZHANG D, CHEN S. Research about tongue image of traditional Chinese medicine (TCM) based on artificial intelligence technology[C]// IEEE. Proceedings of 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing:IEEE, 2020: 633-636.
ZHUANG Q, GAN S, ZHANG L. Human-computer interaction based health diagnostics using ResNet34 for tongue image classification[J]. Comput Methods Programs Biomed, 2022, 226: 107096.
WANG X, LIU J, WU C, et al. Artificial intelligence in tongue diagnosis: Using deep convolutional neural network for recognizing unhealthy tongue with tooth-mark[J]. Comput Struct Biotechnol J, 2020, 18: 973-980.
MA C, GAO C, HOU S, et al. Development of attention-based robust deep learning model for tongue diagnosis by smartphone[J]. bioRxiv, 2023, 2023: 526804.
LI M Y, ZHU D J, XU W, et al. Application of U-net with global convolution network module in computer-aided tongue diagnosis[J]. J Healthc Eng, 2021, 2021: 1-15.
YAN J, CAI J, XU Z, et al. Tongue crack recognition using segmentation based deep learning[J]. Sci Rep, 2023, 13(1): 511.
SREENIVASU S V N, SANTOSH KUMAR P P, MIDASALA V, et al. ODQN-net: Optimized deep Q neural networks for disease prediction through tongue image analysis using remora optimization algorithm[J]. Big Data, 2023, 11(6): 452-465.
JIANG T, LU Z, HU X, et al. Deep learning multi‐label tongue image analysis and its application in a population undergoing routine medical checkup[J]. Evid Based Complement Alternat Med, 2022, 2022: 3384209.
MANSOUR R F, ALTHOBAITI M M, ASHOUR A A. Internet of things and synergic deep learning based biomedical tongue color image analysis for disease diagnosis and classification[J]. IEEE Access, 2021, 9: 94769-94779.
SIVASUBRAMANIAM S, BALAMURUGAN S P. Simulated annealing with deep learning based tongue image analysis for heart disease diagnosis[J]. IASC, 2023, 37(1): 156-169.
BALASUBRAMANIYAN S, JEYAKUMAR V, NACHIMUTHU D S. Panoramic tongue imaging and deep convolutional machine learning model for diabetes diagnosis in humans[J]. Sci Rep, 2022, 12(1): 186.
叶桦,冯全生,严小英,等.基于人工神经网络的糖尿病合并冠心病舌脉象证型预测研究[J]. 中华中医药杂志,2020, 35(10): 5184-5187.
MA C, ZHANG P, DU S, et al. Construction of tongue image-based machine learning model for screening patients with gastric precancerous lesions[J]. J Pers Med, 2023, 13(2): 271.
YUAN L, YANG L, ZHANG S, et al. Development of a tongue image-based machine learning tool for the diagnosis of gastric cancer: a prospective multicentre clinical cohort study[J]. EClinicalMedicine, 2023, 57: 101834.
蔡轶珩,潘建军,郭雅君,等.基于高光谱图像的中医舌苔和舌质分类研究[J]. 北京生物医学工程,2023, 42(6): 559-565, 611.
ZHANG D, PANG W, WANG K, et al. Tongue coating grading identification using deep learning for hyperspectral imaging data[J]. IEEE Access, 2023, 11: 93151-93159.
李庆利,薛永祺,刘治.基于高光谱成像技术的中医舌象辅助诊断系统[J]. 生物医学工程学杂志,2008, 25(2): 368-371.
刘明,赵静,吴太夏,等.双波长比值光谱差异度指数用于人体舌苔舌质分离[J]. 光谱学与光谱分析,2018, 38(6): 1798-1803.
PAN Y, ZHANG H, CHEN Y, et al. Applications of hyperspectral imaging technology combined with machine learning in quality control of traditional Chinese medicine from the perspective of artificial intelligence: A review[J]. Crit Rev Anal Chem, 2023, 29: 1-15.
刘媛,赵鹏程,陆小左.一种面诊图像的分割算法[J]. 电脑知识与技术,2017, 13(26): 183-185.
邢维颖.基于深度学习和中医面诊的血压预测模型构建[D]. 北京:北京中医药大学,2024.
LIU Q, LI Y, YANG P, et al. A survey of artificial intelligence in tongue image for disease diagnosis and syndrome differentiation[J]. Digit Health, 2023, 9: 20552076231191044.
CHU H, JI Y, ZHU D, et al. Artificial intelligence in tongue image recognition[J]. Int J Softw Sci Comput Intell, 2023, 15(1): 1-25.
刘慧琳,韩吉,李福凤.基于复杂网络对舌、面诊图像特征提取及分割分类文献的可视化研究[J]. 世界科学技术-中医药现代化, 2024, 26(5): 1336-1343.
陆洲,沙娇娇,江涛,等. 肺结节中医证候与语言信号诊断特征研究[J]. 上海中医药杂志, 2024, 58(2): 46-51.
EMIL F, CAROLINE S, MARTON M, et al. A remote speech-based AI system to screen for early Alzheimer's disease via smartphones[J].Alzheimers Dement, 2022, 14(1): e12366.
王万虹,张义. 心音图诊断肺高血压的临床研究[J]. 中国现代医药杂志, 2024, 26(5): 34-37.
DING X X, WU Z P, GAO M Z, et al. A high-sensitivity bowel sound electronic monitor based on piezoelectric micromachined ultrasonic transducer[J]. Micromachines, 2022, 13(12): 2221.
陈春凤,王忆勤,郭睿,等. 803例五脏病变患者语音的客观化采集与分析[J]. 中华中医药杂志, 2012, 27(5): 1455-1457.
CHEN Z A, LI M Y, WANG R Y, et al. Diagnosis of COVID-19 via acoustic analysis and artificial intelligence by monitoring breath sounds on smartphones[J]. J Biomed Inform, 2022, 130: 104078.
辛逸男,张莉,吴鹏飞,等. 一种基于语音信号的抑郁症智能诊断方法[J]. 北京生物医学工程, 2023, 42(1): 39-42.
谷明轩,范冰冰. 基于多模态特征融合的抑郁症识别[J]. 计算机与现代化, 2023(10): 17-22.
陆嘉文,陈始圆,袁履凡. 基于Matlab深度学习的智能听诊系统应用程序开发[J]. 中国医学物理学杂志, 2023, 40(5): 602-608.
侯丽敏,刘焕成,张新鹏. 基于卷积神经网络的不同病理的鼾声分类[J]. 复旦学报(自然科学版), 2021, 60(3): 367-374.
JAKUB F,KACPER R,JAN K N,et al. Analysis of gastrointestinal acoustic activity using deep neural networks[J].Sensors, 2021, 21(22): 7602.
SILVANO D,GIORGIO P, PIERLUIGI C,et al. Electronic nose technology in respiratory diseases[J]. Lung, 2017, 195(2): 157-165.
ANA R T,JORDI G,LIDIA P,et al. Predicting early hospital readmissions in COPD patients using an electronic nose[J]. Arch Bronconeumol, 2022, 58(9): 663-665.
MICHELLE L, VINCENT C, PIERRE B, et al. Screening of breast cancer from sweat samples analyzed by 2-dimensional gas chromatography-mass spectrometry: A preliminary study[J]. Cancers, 2023, 15(11): 2939.
林雪娟,周福,吴青海,等. 基于电子鼻的2型糖尿病常见病位的气味图谱辨识研究[J]. 中华中医药杂志,2022, 37(7): 3785-3789.
周福,连梨梨,张劲松,等. 基于电子鼻的社区获得性肺炎常见病位间的气味图谱特征识别[J]. 中华中医药杂志, 2019, 34(12): 5954-5956.
钟有东,王峰,邱逸铭,等.基于Rasa框架的中医问答系统设计[J].电脑知识与技术,2022, 18(11): 74-76.
何圆姣, 刘国华.融合BERT和GCN的中医问诊辅助诊断算法研究[J]. 南开大学学报(自然科学版), 2024, 57(2): 70-78.
杜曾贞, 唐东昕, 解丹.智能问诊中基于深度神经网络的反问生成方法[J]. 计算机应用, 2022, 42(3): 867-873.
余骞, 王培培, 刘炜.面向精准交互的智能预问诊模型研究[J]. 计算机应用与软件, 2023, 40(9): 65-72.
谭威. 基于知识图谱的智能医疗问答及导诊系统的研究[D]. 上海:上海交通大学,2022.
JIANG Q Y, HUANG W H, LIANG J F, et al. A novel intelligent model for visualized inference of medical diagnosis: A case of TCM[J]. Artif Intell Med, 2024, 149: 102799.
ZHANG H, NI W, LI J, et al. Artificial intelligence-based traditional Chinese medicine assistive diagnostic system: Validation study[J].JMIR Med Inform, 2020, 8(6): e17608.
王芬, 刘铜华, 丁雷,等. 基于概率图的中医动态交互问诊与智能辨证的数学模型的探索[J]. 世界科学技术-中医药现代化, 2023, 25(10): 3370-3376.
刘茂. 基于知识图谱的中医问诊系统[D]. 重庆:西南大学,2024.
苏尤丽, 胡宣宇, 马世杰,等.人工智能在中医诊疗领域的研究综述[J].计算机工程与应用,2024, 60(16): 1-18.
马亚楠, 刘国华.中医智能诊疗信息采集系统的设计与实现[J].南开大学学报(自然科学版), 2022, 55(5): 67-71.
ZHANG P, SHEN S, DENG W, et al.The construction model of the TCM clinical knowledge coding database based on knowledge organization[J]. Biomed Res Int, 2022, 2022: 2503779.
LUEG C, JUNGO V.Mobile remote presence robots for medical consultation and social connectedness[J]. Stud Health Technol Inform, 2021, 281: 999-1003.
费兆馥. 现代中医脉诊学[M]. 北京: 人民卫生出版社, 2003.
衣凯,张梦笛,郭沈,等.中医脉诊智能化设备数据标注的研究述评[J].上海中医药杂志,2024, 58(10): 5-10.
周智慧,崔骥,许家佗.阵列式脉图采集分析技术研究进展[J].中国中医药信息杂志,2023, 30(6): 176-180.
杨杰. 新型三部脉象采集系统与脉象信息分析研究[D]. 上海:华东理工大学, 2018.
王常海, 司帆, 朱晓晓, 等. 3D打印技术在指压式三部脉象采集中的应用及脉象要素分析算法研究[J]. 中华中医药杂志, 2020, 35(1): 376-379.
XIN M, LU N, YIN D, et al. Ballpoint-pen like probes for multipoint dynamic pulse diagnosis system[J]. IEEE Sensors J, 2022, 22: 12253-12259.
胡晓娟. 中医脉诊信号感知与计算机辅助识别研究[D]. 上海:华东师范大学, 2013.
杨涛,漆隽之,胡孔法,等.知识驱动的中医智能诊疗研究思路与方法[J]. 中华中医药学刊,2024, 42(10): 13-16, 259-260.
XU H, WANG Q, MAO X, et al. Refined multiscale entropy analysis of wrist pulse for gender difference in traditional Chinese medicine among young individuals[J]. Evid Based Complement Alternat Med,2022, 2022: 7285312.
HU X J, ZHANG L, XU J T, et al. Pulse wave cycle features analysis of different blood pressure grades in the elderly[J]. Evid Based Complement Alternat Med, 2018, 2018: 1-12.
王欣榕. 基于寸关尺三通道脉诊信息预测血压及虚实证的人工智能方法学初探[D]. 北京:北京中医药大学, 2022.
DUAN Y Y, LIU P R, HUO T T, et al. Application and development of intelligent medicine in traditional Chinese medicine[J]. Curr Med Sci, 2021, 41(6): 1116-1122.
沈睿, 毛晓波, 周熙, 等. 智能中医舌脉诊断手环[J]. 电子设计工程, 2022, 30(14): 156-160.
何静. 基于贝叶斯网络的中医辨证人工智能系统在舌诊和脉诊中的应用价值[J]. 齐齐哈尔医学院学报, 2019, 40(22): 2872-2873.
LI D, QU J, TIAN Z, et al. Knowledge-based recurrent neural network for TCM cerebral palsy diagnosis[J]. Evid Based Complement Alternat Med, 2022, 2022: 7708376.
李军, 胡晓娟, 周昌乐, 等. 基于随机森林算法的糖尿病舌象特征分析和诊断模型研究[J]. 中华中医药杂志, 2022, 37(3): 1639-1643.
张晓燕, 屠立平, 王瑞, 等. 知识图谱支持中医临床决策辅助应用进展[J]. 中国中医基础医学杂志, 2024, 30(5): 914-917.
SONG Y, ZHAO B, JIA J, et al. A review on different kinds of artificial intelligence solutions in TCM syndrome differentiation application[J]. Evid Based Complement Alternat Med, 2021, 2021: 6654545.
WU S, WANG P, KONG Z, et al. A Multi-model Fusion Model for Traditional Chinese Medicine Syndrome Classification of Omicron Patients[C]//IEEE. Proceedings of 2023 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA) .Chengdu:IEEE, 2023: 172-177.
梁文娜, 林雪娟, 俞洁, 等. 真实世界的大数据助推中医健康管理进入人工智能时代[C]//福建省中医药学会. 第四届仁心雕龙学术论坛暨福建省中医药学会治未病分会2018学术年会论文集. 泉州:福建省中医药学会治未病分会, 2018: 1213-1215.
YAN E, SONG J, LIU C, et al. A research on syndrome element differentiation based on phenomenology and mathematical method[J]. Chin Med, 2017, 12(1): 19.
JI W, ZHANG Y, WANG X, et al. Latent semantic diagnosis in traditional Chinese medicine[J]. World Wide Web, 2017, 20(5): 1071-1087.
CHEN J, YANG D, CAO Y, et al. Syndrome differentiation and treatment algorithm model in traditional Chinese medicine based on disease cause, location, characteristics and conditions[J]. IEEE Access, 2018, 6: 71801-71813.
XU Q, TANG W, TENG F, et al. Intelligent syndrome differentiation of traditional Chinese medicine by ANN: A case study of chronic obstructive pulmonary disease[J]. IEEE Access, 2019, 7: 76167-76175.
HU C, ZHANG S, GU T, et al. Multi-task joint learning model for Chinese word segmentation and syndrome differentiation in traditional Chinese medicine[J]. Int J Environ Res Public Health, 2022, 19(9):5601.
LI M, WEN G, ZHONG J, et al. Personalized intelligent syndrome differentiation guided by TCM consultation philosophy[J]. J Healthc Eng, 2022, 2022: 6553017.
HU H, CHENG C, YE Q, et al. Enhancing traditional Chinese medicine diagnostics: Integrating ontological knowledge for multi-label symptom entity classification[J]. Math Biosci Eng, 2023, 21(1): 369-391.
TIAN Z, WANG D, SUN X, et al. Current status and trends of artificial intelligence research on the four traditional Chinese medicine diagnostic methods: a scientometric study[J]. Ann Transl Med, 2023, 11(3): 145.
FENG C, SHAO Y, WANG B, et al. Development and application of artificial intelligence in auxiliary TCM diagnosis[J]. Evid Based Complement Alternat, 2021, 2021: 6656053.
赵剑波,李应存,张洲,等.基于ChatGPT发布探讨新一代人工智能对中医古籍文献研究的影响[J]. 上海中医药杂志,2023, 57(12): 17-21.
何宇浩,李明,罗晓兰,等.基于GPTs的中医知识图谱实体和关系抽取研究[J]. 上海中医药杂志,2024, 58(8): 1-6.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构