浏览全部资源
扫码关注微信
1.甘肃中医药大学研究生院(甘肃 兰州 730000)
2.甘肃省中医院脊柱骨二科(甘肃 兰州 730050)
刘晏东,男,硕士研究生,住院医师,主要从事中西医结合防治脊柱疾病的研究工作
张彦军,主任医师,硕士研究生导师; E-mail: 305415714@qq.com
纸质出版日期:2025-01-10,
收稿日期:2024-05-08,
移动端阅览
刘晏东,张彦军,毛家伟,等.NLRP3炎症小体在肌少⁃骨质疏松症中的作用及中药单体干预进展[J].上海中医药杂志,2025,59(1):89-94.
LIU Yandong,ZHANG Yanjun,MAO Jiawei,et al.Role of NLRP3 inflammasome in osteo‑sarcopenia and advances in intervention with traditional Chinese medicine monomers[J].Shanghai Journal of Traditional Chinese Medicine,2025,59(1):89-94.
刘晏东,张彦军,毛家伟,等.NLRP3炎症小体在肌少⁃骨质疏松症中的作用及中药单体干预进展[J].上海中医药杂志,2025,59(1):89-94. DOI: 10.16305/j.1007-1334.2024.20240508001.
LIU Yandong,ZHANG Yanjun,MAO Jiawei,et al.Role of NLRP3 inflammasome in osteo‑sarcopenia and advances in intervention with traditional Chinese medicine monomers[J].Shanghai Journal of Traditional Chinese Medicine,2025,59(1):89-94. DOI: 10.16305/j.1007-1334.2024.20240508001.
肌少-骨质疏松症(OS)是一种以肌肉的质量、功能以及骨骼密度、强度同步衰减为特征的代谢性疾病。NOD样受体家族核苷酸结合寡聚化结构域样受体3(NLRP3)炎症小体在OS的发病过程中扮演着重要的角色,NLRP3炎症小体的持续活跃可通过多种机制导致肌、骨系统的结构和功能发生病理改变,最终发生肌骨共减。通过综述NLRP3炎症小体在OS中的作用及中药单体对其干预的研究进展,揭示OS的发病机制,为中医药防治OS提供参考。
Osteo-sarcopenia (OS) is a metabolic disease characterized by the simultaneous decline in muscle mass, function, and bone density and strength. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a crucial role in the pathogenesis of OS. Persistent activation of the NLRP3 inflammasome can lead to pathological changes in the structure and function of the musculoskeletal system through various mechanisms, ultimately resulting in muscle bone co-reduction. By reviewing the role of the NLRP3 inflammasome in OS and the research progress of interventions with traditional Chinese medicine monomers, this paper aims to elucidate the pathogenesis of OS and provide a reference for the prevention and treatment of OS with traditional Chinese medicine.
肌少-骨质疏松症肌肉减少症骨质疏松症炎症中药研究
osteo-sarcopeniasarcopeniaosteoporosisinflammationtraditional Chinese herbal medicine research
ABIDIN N Z. Comparison of muscle, bone and fat indices between stages of sarcopenia in postmenopausal Malaysian women[J]. Malays J Med Sci, 2023, 30(5): 91-105.
LU L, TIAN L. Postmenopausal osteoporosis coexisting with sarcopenia: the role and mechanisms of estrogen[J]. J Endocrinol, 2023, 259(1): e230116.
RUAN H, ZHANG H, FENG J, et al. Inhibition of Caspase-1-mediated pyroptosis promotes osteogenic differentiation, offering a therapeutic target for osteoporosis[J]. Int Immunopharmacol, 2023,124(Pt B):110901.
DE BIASE D, PIEGARI G, PRISCO F, et al. Implication of the NLRP3 inflammasome in bovine age-related sarcopenia[J]. Int J Mol Sci, 2021, 22(7): 3609.
赵瑞, 林贤灿, 黄宏兴, 等. “后天养先天”理论探讨肠道菌群在肌少-骨质疏松症中的作用[J]. 中国骨质疏松杂志, 2023, 29 (8): 1172-1176.
LU R, ZHOU X, ZHANG L, et al. Nrf2 deficiency exacerbates Parkinson's disease by aggravating NLRP3 inflammasome activation in MPTP-induced mouse models and LPS-induced BV2 cells[J]. J Inflamm Res, 2024 ,17: 6277-6295.
SEOANE P I, LEE B, HOYLE C, et al. The NLRP3-inflammasome as a sensor of organelle dysfunction[J]. J Cell Biol, 2020, 219(12): e202006194.
LU R, ZHOU X, ZHANG L, et al. Nrf2 deficiency exacerbates Parkinson's disease by aggravating NLRP3 inflammasome activation in MPTP-induced mouse models and LPS-induced BV2 cells[J]. J Inflamm Res, 2024 ,17:6277-6295.
BLEVINS H M, XU Y, BIBY S, et al. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021.
XUE T, ZHANG Q, ZHANG T, et al. Zafirlukast ameliorates lipopolysaccharide and bleomycin-induced lung inflammation in mice[J]. BMC Pulm Med, 2024, 24(1): 456.
KELLEY N, JELTEMA D, DUAN Y, et al. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328.
XU T, YU W, FANG H, et al. Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation[J]. Cell Death Differ, 2022, 29(8): 1582-1595.
WANG K, ZHOU Y, WEN C, et al. Protective effects of tetramethylpyrazine on myocardial ischemia/reperfusion injury involve NLRP3 inflammasome suppression by autophagy activation[J/OL]. Biochem Pharmacol, 2024[2024-09-19]. https://pubmed.ncbi.nlm.nih.gov/39284501/https://pubmed.ncbi.nlm.nih.gov/39284501/.
SONG H, ZHAO C, YU Z, et al. UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression[J]. Nat Commun, 2020, 11(1): 6042.
LIN Y, LV X, SUN C, et al. TRIM50 promotes NLRP3 inflammasome activation by directly inducing NLRP3 oligomerization[J]. EMBO Rep, 2022, 23(11): e54569.
AKTHER M, HAQUE M E, PARK J, et al. NLRP3 ubiquitination-A new approach to target NLRP3 inflammasome activation[J]. Int J Mol Sci, 2021, 22(16): 8780.
YUAN A, LIU J, GUO J, et al. Calenduloside E ameliorates inflammatory responses in adipose tissue via sirtuin 2-NLRP3 inflammasome Axis[J/OL]. J Agric Food Chem, 2024[2024-09-19]. https://pubmed.ncbi.nlm.nih.gov/39282743/https://pubmed.ncbi.nlm.nih.gov/39282743/.
WANG M, LIU M, XU W, et al. Sulforaphane reduces lipopolysaccharide-induced inflammation and enhances myogenic differentiation of mouse embryonic myoblasts via the toll-like receptor 4 and NLRP3 pathways[J]. Adv Clin Exp Med, 2023, 32(4): 457-467.
EGGELBUSCH M, SHI A, BROEKSMA B C, et al. The NLRP3 inflammasome contributes to inflammation-induced morphological and metabolic alterations in skeletal muscle[J]. J Cachexia Sarcopenia Muscle, 2022,13(6): 3048-3061.
SAYED R K A, FERNÁNDEZ-ORTIZ M, DIAZ-CASADO M E, et al. Lack of NLRP3 inflammasome activation reduces age-dependent sarcopenia and mitochondrial dysfunction, favoring the prophylactic effect of melatonin[J]. J Gerontol A Biol Sci Med Sci, 2019, 74(11): 1699-1708.
PRUD'HOMME G J, WANG Q. Anti-inflammatory role of the Klotho protein and relevance to aging[J]. Cells, 2024, 13(17): 1413.
LI H, LI X, XU G, et al. Minocycline alleviates lipopolysaccharide-induced cardiotoxicity by suppressing the NLRP3/Caspase-1 signaling pathway[J]. Sci Rep, 2024, 14(1): 21180.
YOU Z, HUANG X, XIANG Y, et al. Ablation of NLRP3 inflammasome attenuates muscle atrophy via inhibiting pyroptosis, proteolysis and apoptosis following denervation[J]. Theranostics, 2023,13(1): 374-390.
IRAZOKI A, MARTINEZ-VICENTE M, APARICIO P, et al. Coordination of mitochondrial and lysosomal homeostasis mitigates inflammation and muscle atrophy during aging[J]. Aging Cell, 2022, 21(4): e13583.
FANG W Y, TSENG Y T, LEE T Y, et al. Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF‑κB/TNF‑α and regulating protein synthesis/degradation pathway[J]. Br J Pharmacol, 2021, 178(15): 2998-3016.
WANG L, JIAO X F, WU C, et al. Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis[J]. Cell Death Discov, 2021, 7(1): 251.
陈弘林, 余富勇, 尚奇, 等. 龟甲提取物干扰NF-κB-NLRP3炎症体正反馈回路改善老年性骨质疏松的研究 [J]. 中华中医药杂志, 2023, 38(5): 2437-2443.
于涛, 王海. 基于Caspase-1研究NLRP3/Caspase-1通路对成骨细胞焦亡作用机制[J]. 外科研究与新技术, 2023, 12(3): 163-167.
CUI Z, ZHAO X, AMEVOR F K, et al. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism[J]. Front Immunol, 2022, 13: 943321.
MURAKAMI T, NAKAMINAMI Y, TAKAHATA Y, et al. Activation and function of NLRP3 inflammasome in bone and joint-related diseases[J]. Int J Mol Sci, 2022, 23(10): 5365.
TANG H, DU Y, TAN Z, et al. METTL14-mediated HOXA5 m6A modification alleviates osteoporosis via promoting WNK1 transcription to suppress NLRP3-dependent macrophage pyroptosis[J]. J Orthop Translat, 2024, 48: 190-203.
XU X, YUAN L, HU X, et al. Bone morphogenetic protein 4 ameliorates bleomycin-induced pulmonary fibrosis in mice by repressing NLRP3 inflammasome activation and epithelial-mesenchymal transition[J]. J Thorac Dis, 2024, 16(8): 4875-4891.
XU L, SHEN L, YU X, et al. Effects of irisin on osteoblast apoptosis and osteoporosis in postmenopausal osteoporosis rats through upregulating Nrf2 and inhibiting NLRP3 inflammasome[J]. Exp Ther Med, 2020, 19(2): 1084-1090.
QIAO S, ZHANG X, CHEN Z, et al. Alloferon-1 ameliorates estrogen deficiency-induced osteoporosis through dampening the NLRP3/caspase-1/IL-1β/IL-18 signaling pathway[J]. Int Immunopharmacol, 2023, 124(Pt B): 110954.
LI Q, TAO X, ZHANG Y. Rosmarinic acid alleviates diabetic osteoporosis by suppressing the activation of NLRP3 inflammasome in rats[J/OL]. Physiol Int, 2022[2024-08-29]. https://pubmed.ncbi.nlm.nih.gov/35230263/https://pubmed.ncbi.nlm.nih.gov/35230263/.
PARK J Y, JO S G, LEE H N, et al. Tendril extract of Cucurbita moschata suppresses NLRP3 inflammasome activation in murine macrophages and human trophoblast cells[J]. Int J Med Sci, 2020, 17(8): 1006-1014.
张团庄, 宋渊, 何志军, 等. 中药干预NLRP3炎症小体治疗骨关节相关疾病研究进展[J]. 中国实验方剂学杂志, 2023, 29(22): 193-203.
李向洲, 邢涛, 钱朝良, 等. NLRP3炎症小体在骨关节疾病中的作用及中医药干预进展[J]. 中国实验方剂学杂志, 2023, 29 (18): 241-250.
刘晓娟, 邵平, 胡相卡, 等. 基于网络药理学探讨瘀血痹片的抗炎作用机制[J]. 中药药理与临床, 2022, 38 (4): 56-62.
程晏, 石文俊, 张磊, 等. 瘀血痹片联合抗骨质疏松症药物对膝骨关节炎的临床疗效及膝关节功能评分的影响研究[J]. 中国骨质疏松杂志, 2021, 27(6): 882-885.
ZHU W, DING W, SHANG X, et al. Fangchinoline promotes autophagy and inhibits apoptosis in osteoporotic rats[J]. Med Sci Monit, 2019, 25: 324-332.
ZHOU L, HONG G, LI S, et al. Fangchinoline protects against bone loss in OVX mice via inhibiting osteoclast formation, bone resorption and RANKL-induced signaling[J]. Int J Biol Sci, 2020, 16(2): 309-319.
左远胜, 何智圣, 付中明, 等. 防己诺林碱通过Nrf2/NLRP3途径对去卵巢骨质疏松大鼠骨结构和成骨细胞凋亡的影响[J]. 实用药物与临床, 2021, 24(10): 881-886.
YADAV A, YADAV S S, SINGH S, et al. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy[J]. Eur J Pharmacol, 2022, 925: 174995.
CHOU S L, RAMESH S, KUO C H, et al. Tanshinone ⅡA inhibits Leu27IGF-Ⅱ-induced insulin-like growth factor receptor Ⅱ signaling and myocardial apoptosis via estrogen receptor-mediated Akt activation[J]. Environ Toxicol, 2022, 37(1): 142-150.
王玺, 李凯, 冯康虎, 等. 丹参酮ⅡA对尾吊大鼠发生废用性骨质疏松症防治作用的研究[J]. 中成药, 2020, 42(12): 3302-3307.
陶蕾, 王广宇, 王明彦, 等. 丹参酮提取物的急性毒性及抗炎试验研究[J]. 生物化工, 2022, 8(5): 90-92.
YANG W Y, CAO H J, LI L, et al. A phytomolecule icariin protects from sarcopenia partially by suppressing myosin heavy chain degradation in orchiectomized rats[J]. Adv Biol (Weinh), 2022, 6(12): e2200162.
LUO Z, DONG J, WU J. Impact of icariin and its derivatives on inflammatory diseases and relevant signaling pathways[J]. Int Immunopharmacol, 2022, 108: 108861.
KIM J Y, KIM H M, KIM J H, et al. Salvia plebeia R.Br. and rosmarinic acid attenuate dexamethasone-induced muscle atrophy in C2C12 myotubes[J]. Int J Mol Sci, 2023, 24(3): 1876.
DEN HARTOGH D J, VLAVCHESKI F, TSIANI E. Muscle cell insulin resistance is attenuated by rosmarinic acid: elucidating the mechanisms involved[J]. Int J Mol Sci, 2023, 24(6): 5094.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构