ZHANG Linli,WANG Lin,CHEN Yiping,et al.Research progress on traditional Chinese herbal medicine in treatment of uric acid nephropathy[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(9):96-101.
ZHANG Linli,WANG Lin,CHEN Yiping,et al.Research progress on traditional Chinese herbal medicine in treatment of uric acid nephropathy[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(9):96-101. DOI: 10.16305/j.1007-1334.2024.2308032.
Research progress on traditional Chinese herbal medicine in treatment of uric acid nephropathy
The research progress on traditional Chinese herbal medicine in the treatment of uric acid nephropathy is reviewed. In recent years, researches have found that in the treatment of uric acid nephropathy, traditional Chinese medicine formulas and single drugs have played a protective role in reducing urate deposition, antioxidation, protecting endothelial cells, and improving inflammatory response, providing ideas for further optimizing the clinical plan of uric acid nephropathy.
关键词
尿酸性肾病高尿酸血症慢性肾脏病病因病机作用机制中药研究
Keywords
uric acid nephropathyhyperuricemiachronic kidney diseaseetiology and pathogenesismechanism of actiontraditional Chinese herbal medicine research
references
ZHANG M, ZHU X, WU J, et al. Prevalence of hyperuricemia among Chinese adults: Findings from two nationally representative cross-sectional surveys in 2015-16 and 2018-19[J]. Front Immunol, 2022, 12: 791983.
LIN B, SHAO L, LUO Q, et al. Prevalence of chronic kidney disease and its association with metabolic diseases: a cross-sectional survey in Zhejiang province,Eastern China[J]. BMC Nephrol, 2014, 15: 36.
SU H Y, YANG C, LIANG D, et al. Research advances in the mechanisms of hyperuricemia-induced renal injury[J]. Biomed Res Int, 2020, 2020: 5817348.
TSUKAMOTO S I, WAKUI H, TAMURA K. Effects of uric acid-lowering therapy on the kidney(HTR-2023-0096.R2)[J]. Hypertens Res, 2023, 46(6): 1447-1449.
YANAI H, ADACHI H, HAKOSHIMA M, et al. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease[J]. Int J Mol Sci, 2021, 22(17): 9221.
KUWABARA M, KODAMA T, AE R, et al. Update in uric acid, hypertension, and cardiovascular diseases[J]. Hypertens Res, 2023, 46(7): 1714-1726.
ADOMAKO E A, MOE O W. Uric acid transport, transporters,and their pharmacological targeting[J]. Acta Physiol(Oxf), 2023, 238(2): e13980.
LIPKOWITZ M S. Regulation of uric acid excretion by the kidney[J]. Curr Rheumatol Rep, 2012, 14(2): 179-188.
WU S, KONG M, SONG Y, et al. Ethnic disparities in bidirectional causal effects between serum uric acid and kidney function: Trans-ethnic mendelian randomization study[J]. Heliyon, 2023, 9(11): e21108.
KUMAGAI T, OTA T, TAMURA Y, et al. Time to target uric acid to retard CKD progression[J]. Clin Exp Nephrol, 2017, 21(2): 182-192.
MIAKE J, HISATOME I, TOMITA K, et al. Impact of hyper- and hypo-uricemia on kidney function[J]. Biomedicines, 2023, 11(5): 1258.
ZHEN H, GUI F. The role of hyperuricemia on vascular endothelium dysfunction[J]. Biomed Rep, 2017, 7(4): 325-330.
SANCHEZ-LOZADA L G, RODRIGUEZ-ITURBE B,KELLEY E E, et al. Uric acid and hypertension: an update with recommendations[J]. Am J Hyperten, 2020, 33(7): 583-594.
LIANG W Y, ZHU X Y, ZHANG J W, et al. Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-kappa B signaling[J]. Nutr Metab Cardiovasc Dis, 2015, 25(2): 187-194.
LI S, SUN Z, ZHANG Y, et al. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation[J]. Oncotarget, 2017, 8(6): 10185-10198.
RYU E S, KIM M J, SHIN H S, et al. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease[J]. Am J Physiol Renal Physiol, 2013, 304(5): F471-F480.
ANDERS H J, LI Q, STEIGER S. Asymptomatic hyperuricaemia in chronic kidney disease: mechanisms and clinical implications[J]. Clin Kidney J, 2023, 16(6): 928-938.
MEI Y, DONG B, GENG Z, et al. Excess uric acid induces gouty nephropathy through crystal formation: A review of recent insights[J]. Front Endocrinol (Lausanne), 2022, 13: 911968.
YANG L, CHANG B, GUO Y, et al. The role of oxidative stress-mediated apoptosis in the pathogenesis of uric acid nephropathy[J]. Ren Fail, 2019, 41(1): 616-622.
SONG X, SUN Z, CHEN G, et al. Matrix stiffening induces endothelial dysfunction via the TRPV4/microRNA-6740/endothelin-1 mechanotransduction pathway[J]. Acta Biomater, 2019, 100: 52-60.
TSUPRYKOV O, CHAYKOVSKA L, KRETSCHMER A, et al. Endothelin-1 overexpression improves renal function in eNOS knockout mice[J]. Cell Physiol Biochem, 2015, 37(4): 1474-1490.
COELHO S C, BERILLO O, CAILLON A, et al. Three-month endothelial human Endothelin-1 overexpression causes blood pressure elevation and vascular and kidney injury[J]. Hypertension, 2018, 71(1): 208-216.
MISAWA T, TAKAHAMA M, KOZAKI T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome[J]. Nat Immunol, 2013, 14(5): 454-460.
JOOSTEN L A, NETEA M G, MYLONA E, et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis[J]. Arthritis Rheum, 2010, 62(11): 3237-3248.
TEODORO T B, FERNANDA M F, MATHEUS C, et al. Soluble Uric Acid Activates the NLRP3 Inflammasome[J]. Sci Rep, 2017, 7: 39884.
WANG J, BU X, QIU X, et al. Qinling liquid ameliorates renal immune inflammatory damage via activating autophagy through AMPK/Stat3 pathway in uric acid nephropathy[J]. Cytokine, 2023, 163: 156120.
PARKER J L, KATO T, KUTEYI G, et al. Molecular basis for selective uptake and elimination of organic anions in the kidney by OAT1[J]. Nat Struct Mol Biol, 2023, 30(11): 1786-1793.
MUSIAŁ K, STOJANOWSKI J, MIŚKIEWICZ-BUJNA J, et al. KIM-1, IL-18, and NGAL, in the machine learning prediction of kidney injury among children undergoing hematopoietic stem cell transplantation—A pilot study[J]. Int J Mol Sci, 2023, 24(21): 15791.
AABERG-JESSEN C, SØRENSEN M D, MATOS A L S A, et al. Co-expression of TIMP-1 and its cell surface binding partner CD63 in glioblastomas[J]. BMC Cancer, 2018, 18(1): 270.
CHANG W C, CHU M T, HSU C Y, et al. Rhein,an anthraquinone drug,suppresses the NLRP3 inflammasome and macrophage activation in urate crystal-induced gouty inflammation[J]. Am J Chin Med,2019, 47(1): 135-151.
SHI X,ZHUANG L, ZHAI Z, et al. Polydatin protects against gouty nephropathy by inhibiting renal tubular cell pyroptosis[J]. Int J Rheum Dis, 2023, 26(1): 116-123.