1.上海中医药大学创新中药研究院手性药物研究中心(上海 201203)
扫 描 看 全 文
章安安,贺庆利.蝉虫草及其寄生真菌产生免疫抑制剂多球壳菌素能力的鉴定[J].上海中医药杂志,2023,57(9):11-18.
ZHANG An'an,HE Qingli.Identification of ability of Cordyceps and its parasitic fungi to produce immunosuppressant myriocin[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(9):11-18.
章安安,贺庆利.蝉虫草及其寄生真菌产生免疫抑制剂多球壳菌素能力的鉴定[J].上海中医药杂志,2023,57(9):11-18. DOI: 10.16305/j.1007-1334.2023.2305081.
ZHANG An'an,HE Qingli.Identification of ability of Cordyceps and its parasitic fungi to produce immunosuppressant myriocin[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(9):11-18. DOI: 10.16305/j.1007-1334.2023.2305081.
目的,2,寻找能产生免疫抑制剂多球壳菌素(myriocin)的蝉虫草或其寄生真菌。,方法,2,选取蝉虫草原药材大蝉草和蝉花干燥品,蝉花寄生真菌蝉棒束孢菌(,Cordyceps cicadae,或,Isaria cicadae, Miq.BNCC114807)以及一种线虫草属蝉寄生真菌,Ophiocordyceps, sp.FU30231,通过聚合酶链式反应(PCR)法扩增内源转录间隔区(ITS)序列,鉴定各材料的菌种;分别以乙醇回流提取法和80%甲醇浸提法制备虫生真菌发酵液,并进行液相色谱-质谱(LC-MS)分析;以多球壳菌素标准品为对照,寻找生产多球壳菌素的虫生真菌;通过大量发酵和分离鉴定多球壳菌素,最终确定其产源虫生真菌。,结果,2,ITS序列分析表明,蝉虫草原药材大蝉草和蝉花的寄生真菌分别为奇异弯颈霉(,Tolypocladium paradoxum,)和蝉棒束孢菌。提取液LC-MS分析结果表明,仅,Ophiocordyceps, sp.FU30231中检测到多球壳菌素的产生。大量发酵并分离纯化后,采用核磁谱鉴定确证了,Ophiocordyceps, sp. FU30231产多球壳菌素的能力。,结论,2,Ophiocordyceps, sp.FU30231首次被鉴定为免疫抑制剂多球壳菌素的生产菌株。
Objective,2,To identify the source of immunosuppressant myriocin from Cordyceps and its parasitic fungi.,Methods,2,Dried raw materials of traditional Chinese medicine, Dachancao and Chanhua, and two parasitic fungi of cicada, ,Cordyceps cicadae ,(or ,Isaria cicadae ,Miq.BNCC114807) and ,Ophiocordyceps, sp.FU30231, were selected as potential myriocin producing sources. Polymerase chain reaction (PCR) was applied to obtain internal transcribed space (ITS) sequences of strains of all materials. The fermentation broth of entomogenous fungi was prepared by ethanol-reflux extraction and 80% methanol extraction, respectively, and analyzed by LC-MS. The entomogenous fungi producing myriocin were identified by using myriocin as a control standard. After extensive fermentation and isolation of myriocin, the source of myriocin was finally confirmed.,Results,2,ITS sequences analysis showed that the parasitic fungi of Dachancao and Chanhua were ,Tolypocladium paradoxum, and ,Cordyceps cicadae,, respectively. The results of LC-MS analysis of the extracts indicated that the production of myriocin was detected only in the extract of ,Ophiocordyceps ,sp.FU30231. After massive fermentation, isolation and purification, the ability of ,Ophiocordyceps, sp.FU30231 to produce myriocin was confirmed by NMR spectrum.,Conclusion,2,For the first time, ,Ophiocordyceps, sp.FU30231 was identified as the immunosuppressant myriocin-producing fungus which parasitized on cicada.
蝉虫草虫生真菌免疫抑制剂多球壳菌素免疫疾病
cordycepsentomogenous fungiimmunosuppressantmyriocinimmune disease
ARAGOZZINI F, MANACHINI P L, CRAVERI R, et al. Isolation and structure determination of a new antifungal α-(hydroxymethyl)-α- amino acid[J]. Tetrahedron, 1972, 28(21): 5493-5498.
CRAVERI R, MANACHINI P L, ARAGOZZINI F.Thermozymocidin.New antifungal antibiotic from a thermophilic eumycete[J]. Experientia, 1972, 28(7): 867-868.
FUJITA T, INOUE K, YAMAMOTO S, et al. Fungal metabolites.Part 11.A potent immunosuppressive activity found in Isaria sinclairii metabolite[J]. J Antibiot, 1994, 47(2): 208-215.
FUJITA T, YONETA M, HIROSE R, et al. Simple compounds, 2-alkyl-2-amino-1,3-propanediols have potent immunosuppressive activity[J]. Bioorg Med Chem Lett, 1995, 5(8): 847-852.
FUJITA T, HIROSE R, YONETA M, et al. Potent Immunosuppressants, 2-Alkyl-2-aminopropane-1,3-diols[J]. J Med Chem, 1996, 39(22): 4451-4459.
ADACHI K, KOHARA T, NAKAO N, et al. Design, synthesis, and structure-activity relationships of 2-substituted-2-amino-1,3-propanediols: discovery of a novel immunosuppressant, FTY720[J]. Bioorg Med Chem Lett, 1995, 5(8): 853-856.
FUJITA T, HAMAMICHI N, KIUCHI M, et al. Determination of absolute configuration and biological activity of new immunosuppressants, mycestericins D, E, F and G[J]. J Antibiot, 1996, 49(9):846-853.
KIUCHI M, ADACHI K, KOHARA T, et al. Synthesis and immunosuppressive activity of 2-substituted 2-aminopropane-1,3-diols and 2-aminoethanols[J]. J Med Chem, 2000, 43(15): 2946-2961.
陈祝安,李增智,陈以平. 金蝉花[M]. 北京:中医古籍出版社,2014:36.
KRASNOFF S B, REATEGUI R F, WAGENAAR M M, et al. Cicadapeptins I and Ⅱ: new Aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda[J]. J Nat Prod, 2005, 68(1): 50-55.
张颖裕. 人工培育的长座线虫草抗菌活性研究及其化学成分分析[D]. 合肥:安徽农业大学, 2014.
CHEN Y, WANG T, ZHANG X, et al. Structural and immunological studies on the polysaccharide from spores of a medicinal entomogenous fungus Paecilomyces cicadae[J]. Carbohydr Polym, 2021, 254: 117462.
TIAN J, ZHANG C, WANG X, et al. Structural characterization and immunomodulatory activity of intracellular polysaccharide from the mycelium of Paecilomyces cicadae TJJ1213[J]. Food Res Int, 2021, 147: 110515.
UKAI S, MATSUURA S, HARA C, et al. Polysaccharides in fungi.Part Ⅶ.Structure of a new galactomannan from the ascocarps of Cordyceps cicadae Shing[J]. Carbohydr Res, 1982, 101(1): 109.
WANG Y, HE P, HE L, et al. Structural elucidation, antioxidant and immunomodulatory activities of a novel heteropolysaccharide from cultured Paecilomyces cicadae(Miquel.) Samson[J]. Carbohydr Polym, 2019, 216: 270-281.
XU Z, YAN X, SONG Z, et al. Two heteropolysaccharides from Isaria cicadae Miquel differ in composition and potentially immunomodulatory activity[J]. Int J Biol Macromol, 2018, 117: 610-616.
YU J, XU H, MO Z, et al. Determination of myriocin in natural and cultured Cordyceps cicadae using 9-fluorenylmethyl chloroformate derivatization and high-performance liquid chromatography with UV-detection[J]. Anal Sci, 2009, 25(7): 855-859.
胡凯,程文明,李春如. 大蝉虫草发酵液抗真菌活性成分的分离与结构鉴定[J]. 菌物学报,2017,36(3):332-338.
王艺璇,曹秀君,万德光,等. 虫草类药材中多球壳菌素含量的测定研究[J]. 成都中医药大学学报,2018,41(3):6-8.
余佳文,莫志宏,毛先兵,等. 柱前衍生化高效液相色谱法测定蝉花菌丝体中多球壳菌素含量[J]. 药物分析杂志,2010,30(4):664-667.
YU J W, ZHAO J, XIAO Q, et al. Simultaneous determination of myriocin-like long-chain bases in Cordyceps by HPLC-UV with pre-column derivatization[J]. Anal Methods, 2012, 4(7): 2134-2140.
SUN Y, WINK M, WANG P, et al. Biological characteristics, bioactive components and antineoplastic properties of sporoderm-broken spores from wild Cordyceps cicadae[J]. Phytomedicine, 2017, 36: 217-228.
WANG S, YANG F Q, FENG K, et al. Simultaneous determination of nucleosides, myriocin, and carbohydrates in Cordyceps by HPLC coupled with diode array detection and evaporative light scattering detection[J]. J Sep Sci, 2009, 32(23-24): 4069-4076.
CHENG W M, ZHANG Q L, WU Z H, et al. Identification and determination of myriocin in Isaria cicadae and its allies by LTQ-Orbitrap-HRMS[J]. Mycology, 2017, 8(4): 286-292.
NAMBU H, NODA N, NIU W, et al. Stereoselective total synthesis of Myriocin using Rhodium(Ⅱ)-catalyzed C-H amination followed by alkylation[J]. Asian J Org Chem, 2015, 4(11): 1246-1249.
杨莉莉. 西周活动地区及疆域[J]. 西部资源,2006(5):37.
BANFI L, BERETTA M G, COLOMBO L, et al. Total synthesis of(+)-thermozymocidin(myriocin) from D-fructose[J]. J Chem Soc, 1982, 9: 488-490.
BANFI L, BERETTA M G, COLOMBO L, et al. 2-Benzoylamino-2-deoxy-2-hydroxymethyl-D-hexono-1,4-lactones: synthesis from D-fructose and utilization in the total synthesis of thermozymocidin(myriocin)[J]. J Chem Soc, 1983(8): 1613-1619.
MIYAGAWA T, INUKI S, OISHI S, et al. Construction of Quaternary Carbon Stereocenter of α-Tertiary Amine through Remote C-H Functionalization of Tris Derivatives: Enantioselective Total Synthesis of Myriocin[J]. Org Lett, 2019, 21(14): 5485-5490.
NODA N, NAMBU H, UBUKATA K, et al. Total synthesis of myriocin and mycestericin D employing Rh(Ⅱ)-catalyzed C-H amination followed by stereoselective alkylation[J]. Tetrahedron, 2017, 73(7): 868-878.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution