1.上海中医药大学附属曙光医院消化病研究所(上海 201203)
2.上海中医药大学附属曙光医院内镜中心(上海 201203)
3.上海中医药大学附属曙光医院消化内科(上海 201203)
扫 描 看 全 文
何盛澜,徐小雯,龚彪.水飞蓟宾靶向结直肠癌肿瘤微环境作用机制研究进展[J].上海中医药杂志,2023,57(11):90-94.
HE Shenglan,XU Xiaowen,GONG Biao.Research progress on mechanism of Silibinin targeting colorectal cancer microenvironment[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(11):90-94.
何盛澜,徐小雯,龚彪.水飞蓟宾靶向结直肠癌肿瘤微环境作用机制研究进展[J].上海中医药杂志,2023,57(11):90-94. DOI: 10.16305/j.1007-1334.2023.2305033.
HE Shenglan,XU Xiaowen,GONG Biao.Research progress on mechanism of Silibinin targeting colorectal cancer microenvironment[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(11):90-94. DOI: 10.16305/j.1007-1334.2023.2305033.
肿瘤微环境是指围绕在肿瘤细胞周围的细胞和理化成分,其改变与肿瘤的侵袭、转移及耐药有关。与肿瘤细胞相比,肿瘤微环境中的非肿瘤成分具有更好的遗传稳定性。水飞蓟宾能够在肿瘤的不同阶段发挥抗肿瘤作用,在结直肠癌的研究中引起了广泛关注。从血管生成、炎症反应、免疫细胞、细胞外基质以及肿瘤相关成纤维细胞等方面综述水飞蓟宾对结直肠癌肿瘤微环境的靶向作用,以期为结直肠癌的治疗提供参考。
Tumor microenvironment refers to the cells and physicochemical components surrounding tumor cells, whose changes are associated with tumor invasion, metastasis, and drug resistance. Non-tumor components in the tumor microenvironment have better genetic stability than tumor cells. Silibinin has been found to exhibit anti-tumor effects at different stages of tumors and has attracted widespread attention in colorectal cancer research. This article provides a comprehensive review of the targeted action of Silibinin on the tumor microenvironment of colorectal cancer in terms of angiogenesis, inflammatory response, immune cells, extracellular matrix and tumor-associated fibroblasts, aiming to provide references for the treatment of colorectal cancer.
结直肠癌水飞蓟宾肿瘤微环境耐药性靶向治疗研究进展
colorectal cancerSilibinintumor microenvironmentdrug resistancetargeted therapyresearch progress
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
WEI W Q, ZENG H M, ZHENG R S, et al. Cancer registration in China and its role in cancer prevention and control[J]. Lancet Oncol, 2020, 21(7): e342-e349.
JUNTTILA M R, DE SAUVAGE F J. Influence of tumour micro-environment heterogeneity on therapeutic response[J]. Nature, 2013, 501(7467): 346-354.
CHEN X M, SONG E. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115.
GRISARU-TAL S, ITAN M, KLION A D, et al. A new dawn for eosinophils in the tumour microenvironment [J]. Nat Rev Cancer, 2020, 20(10): 594-607.
KUBLI S P, BERGER T, ARAUJO D V, et al. Beyond immune checkpoint blockade: emerging immunological strategies[J]. Nat Rev Drug Discov, 2021, 20(12): 899-919.
MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy [J]. Nat Rev Drug Discov, 2022, 21(11): 799-820.
CIARDIELLO F, CIARDIELLO D, MARTINI G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA Cancer J Clin, 2022, 72(4): 372-401.
CERVANTES A, ADAM R, ROSELLÓ S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2023, 34(1): 10-32.
SVEEN A, KOPETZ S, LOTHE R A. Biomarker-guided therapy for colorectal cancer: strength in complexity[J]. Nat Rev Clin Oncol, 2019, 17(1): 11-32.
SAMERI S, MOHAMMADI C, MEHRABANI M, et al. Targeting the hallmarks of cancer: the effects of Silibinin on proliferation, cell death, angiogenesis, and migration in colorectal cancer[J]. BMC Complement Med Ther, 2021, 21(1): 160.
TULI H S, MITTAL S, AGGARWAL D, et al. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance[J]. Semin Cancer Biol, 2021, 73:196-218.
MAMAN S, WITZ I P. A history of exploring cancer in context[J]. Nat Rev Cancer, 2018, 18(6): 359-376.
BOUMAHDI S, DE SAUVAGE F J. The great escape: tumour cell plasticity in resistance to targeted therapy[J]. Nat Rev Drug Discov, 2019, 19(1): 39-56.
BEJARANO L, JORDAO M J C, JOYCE J A. Therapeutic targeting of the tumor microenvironment[J]. Cancer Discov, 2021, 11(4): 933-959.
MITTAL A, NENWANI M, SARANGI I, et al. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment[J]. Trends Cancer, 2022, 8(10): 855-869.
LI W W, ZHAO X H, LV X, et al. Silibinin retards colitis-associated carcinogenesis by repression of Cdc25C in mouse model[J]. Inflamm Bowel Dis, 2019, 25(7): 1187-1195.
FALLAH M, DAVOODVANDI A, NIKMANZAR S, et al. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer[J]. Biomed Pharmacother, 2021, 142: 112024.
JAHANAFROOZ Z, MOTAMED N, RINNER B, et al. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNAs regulator[J]. Life Sci, 2018, 213:236-247.
JIANG X J, WANG J, DENG X Y, et al. The role of microenvironment in tumor angiogenesis[J]. J Exp Clin Cancer Res, 2020, 39(1): 204.
LUGANO R, RAMACHANDRAN M, DIMBERG A. Tumor angiogenesis: causes, consequences, challenges and opportunities[J]. Cell Mol Life Sci, 2020, 77(9): 1745-1770.
SINGH R P, GU M, AGARWAL R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis[J]. Cancer Res, 2008, 68(6): 2043-2050.
RAVICHANDRAN K, VELMURUGAN B, GU M, et al. Inhibitory effect of Silibinin against azoxymethane-induced colon tumorigenesis in A/J mice[J]. Clin Cancer Res, 2010, 16(18): 4595-4606.
RAJAMANICKAM S, VELMURUGAN B, KAUR M, et al. Chemoprevention of intestinal tumorigenesis in APCmin/+ mice by Silibinin[J]. Cancer Res, 2010, 70(6): 2368-2378.
GRETEN F R, GRIVENNIKOV S I. Inflammation and cancer: triggers, mechanisms, and consequences[J]. Immunity, 2019, 51(1): 27-41.
BHAT A A, NISAR S, SINGH M, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy[J]. Cancer Commun (Lond), 2022, 42(8): 689-715.
NAGAO-KITAMOTO H, KITAMOTO S, KAMADA N. Inflammatory bowel disease and carcinogenesis[J]. Cancer Metastasis Rev, 2022, 41(2): 301-316.
LI L H, YU R, CAI T, et al. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment[J]. Int Immunopharmacol, 2020, 88: 106939.
RAINA K, AGARWAL C, AGARWAL R. Effect of Silibinin in human colorectal cancer cells: targeting the activation of NF-κB signaling[J]. Mol Carcinog, 2013, 52(3): 195-206.
KAUNTZ H, BOUSSEROUEL S, GOSSE F, et al. Silibinin, a natural flavonoid, modulates the early expression of chemoprevention biomarkers in a preclinical model of colon carcinogenesis[J]. Int J Oncol, 2012, 41(3): 849-854.
ESMAILY H, VAZIRI-BAMI A, MIROLIAEE A E, et al. The correlation between NF‑κB inhibition and disease activity by coadministration of Silibinin and ursodeoxycholic acid in experimental colitis[J]. Fundam Clin Pharmacol, 2011, 25(6): 723-733.
NAFEES S, MEHDI S H, ZAFARYAB M, et al. Synergistic interaction of Rutin and Silibinin on human colon cancer cell line[J]. Arch Med Res, 2018, 49(4): 226-234.
SCHMITT M, GRETEN F R. The inflammatory pathogenesis of colorectal cancer[J]. Nat Rev Immunol, 2021, 21(10): 653-667.
MAO Y H, FENG Q Y, ZHENG P, et al. Low tumor infiltrating mast cell density confers prognostic benefit and reflects immunoactivation in colorectal cancer[J]. Int J Cancer, 2018, 143(9): 2271-2280.
SAKITA J Y, ELIAS-OLIVEIRA J, CARLOS D, et al. Mast cell-T cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: potential for therapeutically targeting via mast cell inhibition[J]. J Immunother Cancer, 2022, 10(10): e004653.
KIM B R, SEO H S, KU J M, et al. Silibinin inhibits the production of pro-inflammatory cytokines through inhibition of NF-κB signaling pathway in HMC-1 human mast cells[J]. Inflamm Res, 2013, 62(11): 941-950.
YIN Y, YAO S R, HU Y L, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL-6[J]. Clin Cancer Res, 2017, 23(23): 7375-7387.
ZHONG Q, FANG Y X, LAI Q H, et al. CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling[J]. J Exp Clin Cancer Res, 2020, 39(1): 132.
ZHENG Y Y, CHEN J, WU X Z, et al. Enhanced anti-inflammatory effects of Silibinin and capsaicin combination in lipopolysaccharide-induced RAW264.7 cells by inhibiting NF-κB and MAPK activation[J]. Front Chem, 2022, 10: 934541.
CHEN J, LI D L, XIE L N, et al. Synergistic anti-inflammatory effects of Silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation[J]. Phytomedicine, 2020, 78: 153309.
THEOCHARIS A D, SKANDALIS S S, GIALELI C, et al. Extracellular matrix structure[J]. Adv Drug Deliv Rev, 2016, 97: 4-27.
BONNANS C, CHOU J, WERB Z. Remodelling the extracellular matrix in development and disease[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 786-801.
LI K, TAY F R, YIU C K Y. The past, present and future perspectives of matrix metalloproteinase inhibitors[J]. Pharmacol Ther, 2020, 207: 107465.
CONLON G A, MURRAY G I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis[J]. J Pathol, 2019, 247(5): 629-640.
LIN C M, CHEN Y H, MA H P, et al. Silibinin inhibits the invasion of IL-6-stimulated colon cancer cells via selective JNK/AP-1/MMP-2 modulation in vitro[J]. J Agric Food Chem, 2012, 60(51): 12451-12457.
SAHAI E, ASTSATUROV I, CUKIERMAN E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186.
BIFFI G, TUVESON D A, BIFFI G, et al. Diversity and biology of cancer-associated fibroblasts[J]. Physiol Rev, 2021, 101(1):147-176.
NURMIK M, ULLMANN P, RODRIGUEZ F, et al. In search of definitions: Cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4): 895-905.
TING H J, DEEP G, JAIN A K, et al. Silibinin prevents prostate cancer cell-mediated differentiation of naive fibroblasts into cancer-associated fibroblast phenotype by targeting TGF beta2[J]. Mol Carcinog, 2015, 54(9): 730-741.
TING H, DEEP G, KUMAR S, et al. Beneficial effects of the naturally occurring flavonoid Silibinin on the prostate cancer microenvironment: role of monocyte chemotactic protein-1 and immune cell recruitment[J]. Carcinogenesis, 2016, 37(6): 589-599.
JIANG M, HE K Y, QIU T, et al. Tumor-targeted delivery of Silibinin and IPI-549 synergistically inhibit breast cancer by remodeling the microenvironment[J]. Int J Pharm, 2020, 581: 119239.
CHAKRABORTY D, SUMOVA B, MALLANO T, et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis[J]. Nat Commun, 2017, 8(1): 1130.
VERDURA S, CUYAS E, LLORACH-PARES L, et al. Silibinin is a direct inhibitor of STAT3[J]. Food Chem Toxicol, 2018, 116(Pt B): 161-172.
HOH C, BOOCOCK D, MARCZYLO T, et al. Pilot study of oral Silibinin, a putative chemopreventive agent, in colorectal cancer patients: Silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences[J]. Clin Cancer Res, 2006, 12(9): 2944-2950.
XU R, QIU S, ZHANG J, et al. Silibinin Schiff base derivatives counteract CCl4-induced acute liver injury by enhancing anti-inflammatory and antiapoptotic bioactivities[J]. Drug Des Devel Ther, 2022, 16: 1441-1456.
XI J J, CAO Y, HE R Y, et al. Design, synthesis and biological evaluation of glycosylated derivatives of Silibinin as potential anti-tumor agents[J]. Drug Des Devel Ther, 2023, 17: 2063-2076.
ROMANUCCI V, AGARWAL C, AGARWAL R, et al. Silibinin phosphodiester glyco-conjugates: Synthesis, redox behaviour and biological investigations[J]. Bioorg Chem, 2018, 77: 349-359.
CHAUHAN V P, JAIN R K. Strategies for advancing cancer nanomedicine[J]. Nat Mater, 2013, 12(11): 958-962.
WU S Y, WU F G, CHEN X. Antibody-incorporated nanomedicines for cancer therapy[J]. Adv Mater, 2022, 34(24): e2109210.
PENA Q, WANG A, ZAREMBA O, et al. Metallodrugs in cancer nanomedicine[J]. Chem Soc Rev, 2022, 51(7): 2544-2582.
SHAFIEI G, JAFARI-GHARABAGHLOU D, FARHOUDI-SEFIDAN-JADID M, et al. Targeted delivery of Silibinin via magnetic niosomal nanoparticles: potential application in treatment of colon cancer cells[J]. Front Pharmacol, 2023, 14: 1174120.
MARTIN J D, CABRAL H, STYLIANOPOULOS T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges[J]. Nat Rev Clin Oncol, 2020, 17(4): 251-266.
DE LAZARO I, MOONEY D J. Obstacles and opportunities in a forward vision for cancer nanomedicine[J]. Nat Mater, 2021, 20(11): 1469-1479.
JAIN R K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy[J]. Nat Med, 2001, 7(9): 987-989.
GOEL S, DUDA D G, XU L, et al. Normalization of the vasculature for treatment of cancer and other diseases[J]. Physiol Rev, 2011, 91(3): 1071-1121.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution