1.上海中医药大学龙华临床医学院(上海 201203)
2.上海中医药大学曙光临床医学院(上海 201203)
3.上海中医药大学交叉科学研究院(上海 201203)
4.厦门市中医院肝病科(福建 厦门 361001)
扫 描 看 全 文
汪晨冉,王乐,杨影,等.荷叶生物碱类有效成分抗非酒精性脂肪性肝病的研究进展[J].上海中医药杂志,2023,57(10):76-82.
WANG Chenran,WANG Le,YANG Ying,et al.Research progress on alkaloid active ingredients in Nelumbinis Folium against non‑alcoholic fatty liver disease[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(10):76-82.
汪晨冉,王乐,杨影,等.荷叶生物碱类有效成分抗非酒精性脂肪性肝病的研究进展[J].上海中医药杂志,2023,57(10):76-82. DOI: 10.16305/j.1007-1334.2023.2303094.
WANG Chenran,WANG Le,YANG Ying,et al.Research progress on alkaloid active ingredients in Nelumbinis Folium against non‑alcoholic fatty liver disease[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(10):76-82. DOI: 10.16305/j.1007-1334.2023.2303094.
综述荷叶生物碱类有效成分抗非酒精性脂肪性肝病(NAFLD)的研究进展。荷叶生物碱类化合物治疗NAFLD疗效显著,其作用机制包括改善脂质代谢和糖代谢、抗氧化应激、减轻炎症反应并抗纤维化及调节肠道菌群等。
This paper reviewed the research progress on alkaloid active ingredients in Heye (Nelumbinis Folium) against non-alcoholic fatty liver disease (NAFLD). Alkaloids in Heye (Nelumbinis Folium) have significant therapeutic effects on NAFLD, and their mechanism of action includes improving lipid and glucose metabolism, antioxidative stress, reducing inflammation, anti-fibrosis, and regulating gut microbiota, etc.
非酒精性脂肪性肝病荷叶生物碱分子机制中药研究进展
non-alcoholic fatty liver diseaseHeye (Nelumbinis Folium)alkaloidmolecular mechanismtraditional Chinese herbal medicineresearch progress
丛百红,范妤,段丽芳,等. 非酒精性脂肪性肝病的中医治疗研究进展[J]. 西北药学杂志,2022, 37(1): 160-163.
中华医学会肝病学分会脂肪肝酒精性肝病学组,中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 实用肝脏病杂志,2018, 21(2): 177-186.
FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922.
LI J, ZOU B, YEO Y H, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 389-398.
李令仪,张明香. 中医药治疗非酒精性脂肪肝的研究概况[J]. 内蒙古中医药,2019, 38(8): 158-160.
王婵,杨颖博. 荷叶的化学成分与药理活性研究进展[J]. 现代中药研究与实践,2020, 34(4): 74-81.
高振华,孙伶俐,王豪,等. 荷叶化学成分及其药理活性研究[J]. 广东化工,2020, 47(5): 100-102.
袁咏梅. 中西医结合对短暂性脑缺血发作及短期预后的影响[J]. 长春中医药大学学报,2013, 29(5): 868-869.
费景兰,梁浩卫,赵文霞. 荷叶中药封包治疗顽固性肝硬化腹水患者疗效观察[J]. 光明中医,2015, 30(6): 1208-1210.
韩晓梅,王旭. 黄连荷叶方联合二甲双胍治疗肥胖型2型糖尿病湿热中阻证的临床研究[J]. 北京中医药大学学报,2022, 45(11):1182-1188.
朱正威,金黑鹰. 荷叶黑茶对内生湿热证患者脂代谢及大肠肿瘤相关分子的影响[J]. 陕西中医,2018, 39(4): 467-469.
SHARMA B R, GAUTAM L N, ADHIKARI D, et al. A comprehensive review on chemical profiling of nelumbo nucifera: potential for drug development[J]. Phytother Res, 2017, 31(1):3-26.
刘晓琴,郭慧,晁鲁平,等. 荷叶生物碱对3T3-L1前脂肪细胞增殖分化的影响[J]. 中国食品学报,2016, 16(10): 54-58.
丁畅,银萍,赵奇,等. 荷叶碱通过抑制PI3K/Akt/mTOR通路促进自噬减少巨噬细胞泡沫化的机制研究[J]. 中国病理生理杂志,2020, 36(7): 1230-1236.
程婷婷,原新博,惠小涵,等. 荷叶生物碱成分及其调脂机制研究进展[J]. 中草药,2019, 50(8): 1998-2003.
杨亚辉,吴昊旻,戚进. 荷叶化学成分研究[J]. 现代中药研究与实践,2021, 35(5): 20-27.
国家药典委员会. 中华人民共和国药典(2020年版):一部[M]. 北京:中国医药科技出版社,2020: 287.
陈曦,戚进. 荷叶中黄酮和生物碱的研究进展[J]. 中国实验方剂学杂志,2015, 21(18): 211-214.
MACHADO M V, VCORTEZ-PINTO H. Non-alcoholic fatty liver disease: what the clinician needs to know[J]. World J Gastroenterol, 2014, 20(36): 12956-12980.
CUI H, LI Y, CAO M, et al. Untargeted metabolomic analysis of the effects and mechanism of nuciferine treatment on rats with nonalcoholic fatty liver disease[J]. Front Pharmacol, 2020, 11: 858.
瞿庆喜,朱庆亚,喻凯,等. 凹叶厚朴中具有α-葡萄糖苷酶抑制活性的成分[J]. 应用与环境生物学报,2009, 15(6): 796-798.
WAN C, YUAN T, CIRELLO A L, et al. Antioxidant and α‑glucosidase inhibitory phenolics isolated from highbush blueberry flowers[J]. Food Chem, 2012, 135(3): 1929-1937.
GOLDSTEIN J L, DEBOSE-BOYD R A, BROWN M S. Protein sensors for membrane sterols[J]. Cell, 2006, 124(1): 35-46.
HAO J, ZHU L, ZHAO S, et al. PTEN ameliorates high glucose-induced lipid deposits through regulating SREBP-1/FASN/ACC pathway in renal proximal tubular cells[J]. Exp Cell Res, 2011, 317(11): 1629-1639.
黄凯文,吴菲,李常青,等. 鸡骨草对非酒精性脂肪肝大鼠肝组织SREBP-1c表达的影响[J]. 中药材,2015, 38(11): 2368-2371.
王新. 木犀草素改善小鼠非酒精性脂肪肝的作用及其分子机制[D]. 合肥:合肥工业大学,2015.
YANG X, HUANG M, YANG J, et al. Activity of isoliensinine in improving the symptoms of type 2 diabetic mice via activation of amp-activated kinase and regulation of PPARγ[J]. J Agric Food Chem, 2017, 65(33): 7168-7178.
YANG J, ZHANG Y, JIANG L, et al. A triple combination strategy of UHPLC-MSn, hypolipidemic activity and transcriptome sequencing to unveil the hypolipidemic mechanism of Nelumbo nucifera alkaloids[J]. J Ethnopharmacol, 2022, 282: 114608.
YU M H, HUNG T W, WANG C C, et al. Neochlorogenic acid attenuates hepatic lipid accumulation and inflammation via regulating mir-34a in vitro[J]. Int J Mol Sci, 2021, 22(23): 13163.
MA C, LI G, HE Y, et al. Pronuciferine and nuciferine inhibit lipogenesis in 3T3-L1 adipocytes by activating the AMPK signaling pathway[J]. Life Sci, 2015, 136: 120-125.
LIANG L, YE S, JIANG R, et al. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling[J]. Int Immunopharmacol, 2022, 104: 108306.
何冰,高雁鸿,孙华,等. 荷叶碱对非酒精性脂肪肝模型小鼠肝组织中SREBP信号通路的影响[J]. 天津中医药大学学报,2020, 39(3): 320-323.
王俐钧,吕宝伟,孙建光. 茵杞调脂饮对非酒精性脂肪肝大鼠脂代谢影响的实验研究[J].上海中医药杂志,2019, 53(3): 93-99.
BARANOWSKI M, ZABIELSKI P, BŁACHNIO-ZABIELSKA A U, et al. Insulin-sensitizing effect of LXR agonist T0901317 in high-fat fed rats is associated with restored muscle GLUT4 expression and insulin-stimulated AS160 phosphorylation[J]. Cell Physiol Biochem, 2014, 33(4): 1047-1057.
樊洁敏. 荷叶碱对肝脏脂质代谢和肠道屏障的影响及机制研究[D]. 杭州:浙江大学,2021.
邹瑾,赵真旺,吴洁,等. 荷叶碱对巨噬细胞源性泡沫细胞ABCA1表达与胆固醇流出的影响及机制[J]. 中国动脉硬化杂志,2018, 26(9): 872-876, 924.
RYTER S W, KIM H P, HOETZEL A, et al. Mechanisms of cell death in oxidative stress[J]. Antioxid Redox Signal, 2007, 9(1): 49-89.
SACHDEV M S, RIELY C A, MADAN A K. Nonalcoholic fatty liver disease of obesity[J]. Obes Surg, 2006, 16(11): 1412-1419.
XU P, ZHANG X G, LI Y M, et al. Research on the protection effect of pioglitazone for non-alcoholic fatty liver disease (NAFLD) in rats[J]. J Zhejiang Univ Sci B, 2006, 7(8): 627-633.
WOLF A M, BUSCH B, KUHLMANN H W, et al. Histological changes in the liver of morbidly obese patients: correlation with metabolic parameters[J]. Obes Surg, 2005, 15(2): 228-237.
VANDER HEIDEN M G, CHANDEL N S, WILLIAMSON E K, et al. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria[J]. Cell, 1997, 91(5): 627-637.
金芳多,张天,张钊,等. 芦丁对肝细胞氧化应激损伤的保护作用及其机制[J]. 吉林大学学报(医学版),2020, 46(6): 1117-1123, 1345.
WANG H, YANG Y, ZHANG X, et al. Liensinine attenuates inflammation and oxidative stress in spleen tissue in an LPS-induced mouse sepsis model[J]. J Zhejiang Univ Sci B, 2023, 24(2): 185-190.
COSTA E V, PINHEIRO M L, BARISON A, et al. Alkaloids from the bark of Guatteria hispida and their evaluation as antioxidant and antimicrobial agents[J]. J Nat Prod, 2010, 73(6): 1180-1183.
李煌元,石年. Keap1-Nrf2/ARE通路在分子毒理学中的研究进展[J]. 国外医学(卫生学分册),2006, 33(3): 129-135.
刘秀秀,姜永红,姜之炎,等. 清肺通络方对肺炎支原体诱导A549细胞氧化应激损伤的影响及作用机制研究[J]. 上海中医药杂志,2022, 56(10): 76-82.
OGBORNE R M, RUSHWORTH S A, O'CONNELL M A. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cdelta and Nrf2[J]. Biochem Biophys Res Commun, 2008, 373(4): 584-588.
PAUNKOV A, CHARTOUMPEKIS D V, ZIROS P G, et al. A bibliometric review of the Keap1/Nrf2 pathway and its related antioxidant compounds[J]. Antioxidants (Basel), 2019, 8(9): 353.
XIE Y, ZHANG Y, ZHANG L T, et al. Protective effects of alkaloid compounds from Nelumbinis Plumula on tert-butyl hydroperoxide-induced oxidative stress[J]. Molecules, 2013, 18(9): 10285-10300.
WU X L, DENG M Z, GAO Z J, et al. Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress[J]. Int Immunopharmacol, 2020, 84: 106559.
NICOLSON G L. Metabolic syndrome and mitochondrial function: molecular replacement and antioxidant supplements to prevent membrane peroxidation and restore mitochondrial function[J]. J Cell Biochem, 2007, 100(6): 1352-1369.
WANG M, LI L, XU Y, et al. Roles of hepatic stellate cells in NAFLD: From the perspective of inflammation and fibrosis[J]. Front Pharmacol, 2022, 13: 958428.
DING Y, SUN X, CHEN Y, et al. Epigallocatechin gallate attenuated non-alcoholic steatohepatitis induced by methionine- and choline-deficient diet[J]. Eur J Pharmacol, 2015, 761: 405-412.
RUBIO-PEREZ J M, MORILLAS-RUIZ J M. A review: inflammatory process in Alzheimer's disease, role of cytokines[J]. Sci World J, 2012, 2012: 756357.
KIM C S, KWON Y, CHOE S Y, et al. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1[J]. Nutr Metab (Lond), 2015, 12: 33.
SURAPANENI K M, VISHNU PRIYA V, MALLIKA J. Effect of pioglitazone, quercetin, and hydroxy citric acid on vascular endothelial growth factor messenger RNA (VEGF mRNA) expression in experimentally induced nonalcoholic steatohepatitis (NASH)[J]. Turk J Med Sci, 2015, 45(3): 542-546.
李俊雅,梁晓. 莲心碱对大鼠非酒精性脂肪肝组织的保护作用及机制研究[J]. 中国民族民间医药,2022, 31(4): 29-32.
KIM S M, PARK E J, LEE H J. Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways[J]. Inflammopharmacology, 2022, 30(6): 2373-2383.
WENG T C, SHEN C C, CHIU Y T, et al. Inhibitory effects of armepavine against hepatic fibrosis in rats[J]. J Biomed Sci, 2009, 16(1): 78.
NI B, HUANG X, XI Y, et al. Neferine inhibits expression of inflammatory mediators and matrix degrading enzymes in IL-1β-treated rat chondrocytes via suppressing MAPK and NF-κB signaling pathways[J]. Inflammation, 2020, 43(4): 1209-1221.
WANG Y, WANG S, WANG R, et al. Neferine exerts antioxidant and anti-inflammatory effects on carbon tetrachloride-induced liver fibrosis by inhibiting the MAPK and NF-κB/IκBα pathways[J]. Evid Based Complement Alternat Med, 2021, 2021: 4136019.
CHEN M S, ZHANG J H, WANG J L, et al. Anti-fibrotic effects of neferine on carbon tetrachloride-induced hepatic fibrosis in mice[J]. Am J Chin Med, 2015, 43(2): 231-240.
DING H, SHI J, WANG Y, et al. Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism[J]. Eur J Pharmacol, 2011, 650(1): 163-169.
MAYNERIS-PERXACHS J, CARDELLINI M, HOYLES L, et al. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome[J]. Microbiome, 2021, 9(1): 104.
LEUNG C, RIVERA L, FURNESS J B, et al. The role of the gut microbiota in NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(7): 412-425.
WANG Y, YAO W, LI B, et al. Nuciferine modulates the gut microbiota and prevents obesity in high-fat diet-fed rats[J]. Exp Mol Med, 2020, 52(12): 1959-1975.
熊万涛,廖加抱,杨智霞,等. 荷叶碱对肥胖模型小鼠肠道菌群及慢性炎症的影响[J]. 中国中药杂志,2021, 46(8): 2104-2111.
潘诗哲. 荷叶生物碱盐预防小鼠膳食诱导型肥胖及调节其肠道菌群的功效研究[D]. 杭州:浙江大学,2019.
SUN J, FAN J, LI T, et al. Nuciferine protects against high-fat diet-induced hepatic steatosis via modulation of gut microbiota and bile acid metabolism in rats[J]. J Agric Food Chem, 2022, 70(38): 12014-12028.
GONZALEZ-PEREZ V, MARTINEZ-ESPINOSA P L, SALA-RABANAL M, et al. Goblet cell LRRC26 regulates BK channel activation and protects against colitis in mice[J]. Proc Natl Acad Sci U S A, 2021, 118(3): e2019149118.
俞月. 基于肠道菌群的荷叶碱降脂作用机制研究[D]. 北京:北京协和医学院,2021.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution