1.上海中医药大学交叉科学研究院(上海 201203)
2.上海中医药大学附属岳阳中西医结合医院消化科(上海 200437)
扫 描 看 全 文
孔晨玥,杨文娜,闫秀丽,等.基于转录组学探讨华蟾酥毒基抑制肝癌细胞增殖的作用机制[J].上海中医药杂志,2023,57(8):49-56.
KONG Chenyue,YANG Wenna,YAN Xiuli,et al.Transcriptomics⁃based exploration on mechanism of action of cinobufagin in inhibiting the proliferation of hepatocellular carcinoma cells[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(8):49-56.
孔晨玥,杨文娜,闫秀丽,等.基于转录组学探讨华蟾酥毒基抑制肝癌细胞增殖的作用机制[J].上海中医药杂志,2023,57(8):49-56. DOI: 10.16305/j.1007-1334.2023.2302011.
KONG Chenyue,YANG Wenna,YAN Xiuli,et al.Transcriptomics⁃based exploration on mechanism of action of cinobufagin in inhibiting the proliferation of hepatocellular carcinoma cells[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(8):49-56. DOI: 10.16305/j.1007-1334.2023.2302011.
目的,2,观察华蟾酥毒基(CBF)对肝癌细胞增殖的抑制作用,采用转录组学测序技术揭示相关基因及信号通路,探讨CBF抗肝细胞癌(HCC)的可能作用机制。,方法,2,用不同浓度的CBF(0、2、4、8、16和32 μmol·L,-1,)处理人HCC细胞SMMC-7721和JHH7,时间梯度为24、48和72 h,WST-1试剂盒检测细胞增殖情况。根据WST-1试剂盒检测结果,用CBF 2 μmol·L,-1,干预SMMC-7721和JHH7细胞24 h,然后进行转录组学基因表达测序分析差异表达基因,并行生物信息学分析。基于文献报道及TCGA数据库观察部分差异表达基因在HCC组织中的表达情况,采用实时荧光定量逆转录聚合酶链式反应(RT-qPCR)技术检测并验证CBF靶基因的表达情况。,结果,2,①CBF对SMMC-7721和JHH7细胞具有抑制增殖作用,且呈浓度-时间依赖性。②转录组学测序结果显示,经CBF干预后,SMMC-7721细胞获得差异表达基因共计578个(其中上调基因309个、下调基因269个),JHH7细胞获得差异表达基因共计611个(其中上调基因349个、下调基因262个),两组细胞获得的交集基因共有106个(差异倍数,>,2,,P,<,0.05)。③生物信息学分析显示,激活转录因子3(,ATF3,)、羰基还原酶1(,CBR1,)、细胞骨架相关蛋白4(,CKAP4,)、生长停滞和DNA损伤可诱导蛋白β(,GADD45B,)、钾二孔域通道亚科K成员5(,KCNK5,)、起源识别复合亚基5(,ORC5,)基因的转录水平在HCC组织中呈异常表达并与患者预后相关。④RT-qPCR结果显示,CBF能促进,ATF3,、,KCNK5,和,GADD45B,基因的表达,抑制,CBR1,、,CKAP4,和,ORC5,基因的表达,与测序结果一致。,结论,2,CBF具有抑制HCC细胞增殖的作用,其机制可能与调控,ATF3,、,KCNK5,、,GADD45B,、,CBR1,、,CKAP4,和,ORC5,基因表达有关。
Objective,2,To investigate the inhibitory effect of cinobufagin (CBF) on the proliferation of hepatocellular carcinoma (HCC) cells, reveal the related genes and signaling pathways by transcriptomic sequencing, and explore the possible mechanism of action of anti-HCC effect of CBF.,Methods,2,SMMC-7721 and JHH7 cells were treated with CBF at different concentrations (0, 2, 4, 8, 16 and 32 μmol·L,-1,) at 24, 48 and 72 h. WST-1 assay was used to assess the proliferation rate of HCC cells. Based on the results of WST-1 assay, SMMC-7721 and JHH7 cells were intervened with CBF 2 μmol·L,-1, for 24 h, differentially expressed genes were analyzed with transcriptomic gene expression sequencing, and bioinformatics analysis was performed. Based on literature reports and the TCGA database, the expression of a few differently expressed mRNAs in HCC tissues was discovered. The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect and validate the expression of CBF target genes.,Results,2,①CBF had a proliferation-inhibitory effect on SMMC-7721 and JHH7 cells in a concentration-time dependent manner. ②Transcriptomic sequencing results showed that in CBF-treated SMMC-7721 cells, a total of 578 differentially expressed genes (309 up-regulated genes and 269 down-regulated genes) were obtained; in CBF- treated JHH7 cells, a total of 611 differentially expressed genes (349 up-regulated genes and 262 down-regulated genes) were obtained; and a total of 106 intersecting genes were obtained in the two groups of cells (fold change,>,2, ,P,<,0.05). ③Bioinformatics analysis showed that the transcript levels of ATF3, CBR1, CKAP4, GADD45B, KCNK5 and ORC5 were aberrantly expressed in HCC tissues and correlated with patient prognosis. ④The RT-qPCR results showed that CBF promoted the expression of ,ATF3,, ,KCNK5, and ,GADD45B, genes and inhibited the expression of ,CBR1,, ,CKAP4, and ,ORC5 ,genes in SMMC-7721 and JHH7 cells, which was consistent with the sequencing results.,Conclusion,2,CBF can inhibit the proliferation of HCC cells, and the mechanism may be related to the regulation of ,ATF3,, ,KCNK5,, ,GADD45B,, ,CBR1,, ,CKAP4, and ,ORC5, expression.
华蟾酥毒基肝癌细胞转录组学作用机制中药研究
cinobufaginhepatocellular carcinoma cellstranscriptomicsmechanism of actionresearch of traditional Chinese herbal medicine
CHIDAMBARANATHAN-REGHUPATY S, FISHER P B, SARKAR D. Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification[J]. Adv Cancer Res, 2021, 149: 1-61.
ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. JNCC, 2022, 2(1): 1-9.
FENG W D, ZHAO X Y, YAO Q, et al. Cinobufagin inhibits proliferation and induces apoptosis of hepatocarcinoma cells by activating apoptosis, AKT, and ERK pathways[J]. Acta Biochim Pol, 2022, 69(4): 831-837.
TANG Z, KANG B, LI C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis[J]. Nucleic Acids Res, 2019, 47(W1): W556-W560.
NAGY Á, MUNKÁCSY G, GYŐRFFY B. Pancancer survival analysis of cancer hallmark genes[J]. Sci Rep, 2021, 11(1): 6047.
CHEN C, GE C, LIU Z, et al. ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression[J]. J Exp Clin Cancer Res, 2018, 37(1): 263.
JEON T, KO M J, SEO Y R, et al. Silencing CDCA8 suppresses hepatocellular carcinoma growth and stemness via restoration of ATF3 tumor suppressor and inactivation of AKT/β-catenin signaling[J]. Cancers (Basel), 2021, 13(5): 1055.
LI W C, XIONG Z Y, HUANG P Z, et al. KCNK levels are prognostic and diagnostic markers for hepatocellular carcinoma[J]. Aging (Albany NY), 2019, 11(19): 8169-8182.
ZHANG L, YANG Z, MA A, et al. Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma[J]. Hepatology, 2014, 59(1): 178-189.
ZHOU S, CAO H, ZHAO Y, et al. RACK1 promotes hepatocellular carcinoma cell survival via CBR1 by suppressing TNF-α-induced ROS generation[J]. Oncol Lett, 2016, 12(6): 5303-5308.
TAK E, LEE S, LEE J, et al. Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells[J]. J Hepatol, 2011, 54(2): 328-339.
LI S X, TANG G S, ZHOU D X, et al. Prognostic significance of cytoskeleton-associated membrane protein 4 and its palmitoyl acyltransferase DHHC2 in hepatocellular carcinoma[J]. Cancer, 2014, 120(10): 1520-1531.
WANG X K, WANG Q Q, HUANG J L, et al. Novel candidate biomarkers of origin recognition complex 1, 5 and 6 for survival surveillance in patients with hepatocellular carcinoma[J]. J Cancer, 2020, 11(7): 1869-1882.
TACAR O, DASS C R. Doxorubicin-induced death in tumour cells and cardiomyocytes: is autophagy the key to improving future clinical outcomes?[J]. J Pharm Pharmacol, 2013, 65(11): 1577-1589.
XIAO J, WANG F, WONG N K, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1): 212-221.
余云霞,夏嘉文,熊友香. 中药逆转肝癌多药耐药机制的研究进展[J]. 上海中医药杂志,2019, 53(8): 92-97.
马星,夏伟. 中药抗肝癌细胞增殖和诱导细胞凋亡的信号通路研究进展[J]. 上海中医药杂志,2018, 52(8): 98-101.
孙雪,李颖辉,张博宇,等. 蟾酥研究进展[J]. 牡丹江医学院学报,2022, 43(5): 142-143.
孙璐璐,张璟,刘浩,等. 华蟾酥毒基抗肿瘤作用机制研究进展[J]. 包头医学院学报,2017, 33(5): 133-135.
BAI Y, WANG X, CAI M, et al. Cinobufagin suppresses colorectal cancer growth via STAT3 pathway inhibition[J]. Am J Cancer Res, 2021, 11(1): 200-214.
KIM G H, FANG X Q, LIM W J, et al. Cinobufagin suppresses melanoma cell growth by inhibiting LEF1[J]. Int J Mol Sci, 2020, 21(18): 6706.
JO S, YANG E, LEE Y, et al. Cinobufagin exerts anticancer activity in oral squamous cell carcinoma cells through downregulation of ANO1[J]. Int J Mol Sci, 2021, 22(21): 12037.
PAN Z, LUO Y, XIA Y, et al. Cinobufagin induces cell cycle arrest at the S phase and promotes apoptosis in nasopharyngeal carcinoma cells[J]. Biomed Pharmacother, 2020, 122: 109763.
王颖,唐晓男,康小红,等. 华蟾酥毒基抑制人骨肉瘤细胞迁移和侵袭的机制研究[J].上海中医药杂志,2021, 55(12): 88-93.
DENG X, SHENG J, LIU H, et al. Cinobufagin promotes cell cycle arrest and apoptosis to block human esophageal squamous cell carcinoma cells growth via the p73 signalling pathway[J]. Biol Pharm Bull, 2019, 42(9): 1500-1509.
ZHANG L, LIANG B, XU H, et al. Cinobufagin induces FOXO1-regulated apoptosis, proliferation, migration, and invasion by inhibiting G9a in non-small-cell lung cancer A549 cells[J]. J Ethnopharmacol, 2022, 291: 115095.
HiRASAKI Y, OKABE A, FUKUYO M, et al. Cinobufagin inhibits proliferation of acute myeloid leukaemia cells by repressing c-Myc pathway-associated genes[J]. Chem Biol Interact, 2022, 360: 109936.
ZHU L, CHEN Y, WEI C, et al. Anti-proliferative and pro-apoptotic effects of cinobufagin on human breast cancer MCF-7 cells and its molecular mechanism[J]. Nat Prod Res, 2018, 32(4): 493-497.
YEH J Y, HUANG W J, KAN S F, et al. Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells[J]. Prostate, 2003, 54(2): 112-124.
YANG A L, WU Q, HU Z D, et al. A network pharmacology approach to investigate the anticancer mechanism of cinobufagin against hepatocellular carcinoma via downregulation of EGFR-CDK2 signaling[J]. Toxicol Appl Pharmacol, 2021, 431: 115739.
ZHAO L, FU L, XU Z, et al. The anticancer effects of cinobufagin on hepatocellular carcinoma Huh-7 cells are associated with activation of the p73 signaling pathway[J]. Mol Med Rep, 2019, 19(5): 4119-4128.
JIN X, WANG J, ZOU S, et al. Cinobufagin triggers defects in spindle formation and cap-dependent translation in liver cancer cells by inhibiting the AURKA-Mtor-eIF4E axis[J]. Am J Chin Med, 2020, 48(3): 651-678.
QI F, INAGAKI Y, GAO B, et al. Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas-and mitochondria-mediated pathways[J]. Cancer Sci, 2011, 102(5): 951-958.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution