1.上海中医药大学附属市中医医院肿瘤一科(上海 200071)
扫 描 看 全 文
梅娜,吴建春,骆莹滨,等.中药有效成分调控代谢重编程抗肿瘤研究进展[J].上海中医药杂志,2023,57(10):95-100.
MEI Na,WU Jianchun,LUO Yingbin,et al.Research progress in anti⁃tumor regulation of metabolic reprogramming by active components of traditional Chinese herbal medicines[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(10):95-100.
梅娜,吴建春,骆莹滨,等.中药有效成分调控代谢重编程抗肿瘤研究进展[J].上海中医药杂志,2023,57(10):95-100. DOI: 10.16305/j.1007-1334.2023.2302007.
MEI Na,WU Jianchun,LUO Yingbin,et al.Research progress in anti⁃tumor regulation of metabolic reprogramming by active components of traditional Chinese herbal medicines[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(10):95-100. DOI: 10.16305/j.1007-1334.2023.2302007.
综述肿瘤细胞代谢重编程的关键过程以及中医药调控肿瘤代谢重编程的研究进展。代谢重编程被认为是恶性肿瘤的标志特征。随着对肿瘤生物学复杂性的理解不断加深,医学界对肿瘤代谢重编程的研究也在不断加深。为满足细胞快速增殖的生物能量和生物合成需求,并快速适应肿瘤微环境,肿瘤细胞的能量代谢模式会相应进行重编程,主要体现在葡萄糖、脂质、氨基酸代谢的异常。中药具有多靶点、多途径、多通路调控的特点,可通过调控代谢重编程改变肿瘤细胞代谢微环境,进而发挥抗肿瘤作用。
This paper reviews the key processes of tumor cell metabolic reprogramming and the research progress in regulating tumor metabolic reprogramming by TCHMs. Metabolic reprogramming is considered to be a hallmark feature of malignant tumor. With the increasing understanding of the complexity of tumor biology, the study of tumor metabolic reprogramming has been deepened in the medical community. In order to meet the bioenergetic and biosynthetic demands of rapid cell proliferation and to rapidly adapt to the tumor microenvironment, the energy metabolic pattern of tumor cells will be reprogrammed accordingly, mainly reflected in the abnormalities of glucose, lipid and amino acid metabolism. Traditional Chinese herbal medicines (TCHMs) regulate in a multi-target, multi-pathway and multi-track manner, which can change the metabolic microenvironment of tumor cells through regulating metabolic reprogramming, and then exert anti-tumor effects.
肿瘤代谢重编程中药微环境糖脂代谢作用机制研究进展
tumormetabolic reprogrammingtraditional Chinese herbal medicinemicroenvironmentglycolipid metabolismmechanism of actionresearch progress
ZHANG C, ZHOU S, CHANG H, et al. Metabolomic profiling identified serum metabolite biomarkers and related metabolic pathways of colorectal cancer[J].Dis Markers, 2021, 2021:6858809.
LI H, CHEN Z, ZHANG Y, et al. MiR-4310 regulates hepatocellular carcinoma growth and metastasis through lipid synthesis[J].Cancer Lett, 2021, 519:161-171.
LI R, LI P, WANG J, et al. STIP1 down-regulation inhibits glycolysis by suppressing PKM2 and LDHA and inactivating the Wnt/β-catenin pathway in cervical carcinoma cells[J]. Life Sci, 2020, 258:118190.
WARBURG O, WIND F, NEGELEIN E.The metabolism of tumors in the body[J].J Gen Physiol, 1927, 8(6):519-530.
OLIVEIRA P F, MARTINS A D, MOREIRA A C, et al.The Warburg effect revisited--lesson from the Sertoli cell[J].Med Res Rev, 2015, 35(1): 126-151.
FUKUSHI A, KIM H D, CHANG Y C, et al. Revisited metabolic control and reprogramming cancers by means of the Warburg effect in tumor cells[J].Int J Mol Sci, 2022, 23(17): 10037.
LIEU E L, NGUYEN T, RHYNE S, et al. Amino acids in cancer[J].Exp Mol Med, 2020, 52(1): 15-30.
KOUNGOUROS N,POULOGIANNIS G.Reprogramming of fatty acid metabolism in cancer[J].Br J Cancer, 2020, 122(1): 4-22.
KOPPULA P, ZHUANG L, GAN B.Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J].Protein Cell, 2021, 12(8): 599-620.
CARROLL P A, FREIE B W, MATHSYARAJA H, et al.The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis[J].Front Med, 2018, 12(4): 412-425.
HOXHAJ G, MANNING B D.The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism[J].Nat Rev Cancer, 2020, 20(2): 74-88.
ZHU B, CAO X, ZHANG W, et al.MicroRNA-31-5p enhances the Warburg effect via targeting FIH[J]. FASEB J, 2019, 33(1): 545-556.
PARK J H, PYUN W Y, PARK H W. Cancer metabolism: phenotype, signaling and therapeutic targets[J]. Cells, 2020, 9(10):2308.
LONG W, GONG X, YANG Y, et al. Downregulation of PER2 promotes tumor progression by enhancing glycolysis via the phosphatidylinositol 3-kinase/protein kinase B pathway in oral squamous cell carcinoma[J]. J Oral Maxillofac Surg, 2020, 78(10):1780.e1-1780.e14.
KRUISWIJK F, LABUSCHAGNE C F, VOUSDEN K H.p53 in survival, death and metabolic health: a lifeguard with a licence to kill[J].Nat Rev Mol Cell Biol, 2015, 16(7): 393-405.
LABUSCHAGNE C F, ZANI F, VOUSDEN K H.Control of metabolism by p53-Cancer and beyond[J].Biochim Biophys Acta Rev Cancer,2018, 1870(1): 32-42.
韩懿存,季青.聚焦肿瘤微环境重塑:中药及其有效成分干预肿瘤复发转移的优势与思考[J].上海中医药杂志,2023, 57(4): 1-7.
ZHANG X, QIU H, LI C, et al. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer[J].Biosci Trends, 2021, 15(5): 283-298.
VAUPEL P, SCHMIDBERGER H, MAYER A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression[J]. Int J Radiat Biol, 2019, 95(7): 912-919.
HAY N.Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?[J].Nat Rev Cancer, 2016, 16(10):635-649.
ABDEL-WAHAB A F, MAHMOUD W, AL-HARIZY R M.Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy[J].Pharmacol Res, 2019, 150: 104511.
AKINS N S, NISLSON T C, LE H V.Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer[J].Curr Top Med Chem, 2018, 18(6): 494-504.
MOLONEY J N, COTTER T G.ROS signalling in the biology of cancer[J].Semin Cell Dev Biol, 2018, 80: 50-64.
MOGHADAM E R, ANG H L, ASNAF S E, et al.Broad-spectrum preclinical antitumor activity of chrysin: current trends and future perspectives[J].Biomolecules, 2020, 10(10): 1374.
XU D, JIN J, YU H, et al.Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2[J].J Exp Clin Cancer Res, 2017, 36(1): 44.
HONG X, ZHONG L, XIE Y, et al.Matrine reverses the Warburg effect and suppresses colon cancer cell growth via negatively regulating HIF-1α[J].Front Pharmacol,2019, 10: 1437.
SIDDIQUI F A, PRAKASAM G, CHATTOPADHYAY S, et al.Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition[J].Sci Rep, 2018, 8(1): 8323.
GIORDANO A,TOMMONARO G.Curcumin and cancer[J].Nutrients, 2019, 11(10): 2376.
LIU Z, ZHU W, KONG X, et al.Tanshinone ⅡA inhibits glucose metabolism leading to apoptosis in cervical cancer[J].Oncol Rep, 2019, 42(5): 1893-1903.
LI Y, XU Q, YANG W, et al.Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells[J].Gene, 2019, 712: 143956.
AMARA S, ZHENG M, TIRIVEEDHI V.Oleanolic acid inhibits high salt-induced exaggeration of Warburg-like metabolism in breast cancer cells[J].Cell Biochem Biophys, 2016, 74(3): 427-434.
WU J, ZHANG X, WANG Y, et al.Licochalcone A suppresses hexokinase 2-mediated tumor glycolysis in gastric cancer via downregulation of the Akt signaling pathway[J].Oncol Rep, 2018, 39(3): 1181-1190.
FLORES J, WHITE B M, BREA R J, et al.Lipids: chemical tools for their synthesis, modification, and analysis[J].Chem Soc Rev, 2020, 49(14): 4602-4614.
BUTLER L M, PERONE Y, DEHAIRS J, et al.Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention[J].Adv Drug Deliv Rev, 2020, 159: 245-293.
CAO Y. Adipocyte and lipid metabolism in cancer drug resistance[J].J Clin Invest, 2019, 129(8): 3006-3017.
CORN K C, WINDHAM M A, RAFAT M. Lipids in the tumor microenvironment: From cancer progression to treatment[J].Prog Lipid Res, 2020, 80: 101055.
CHENG C, GENG F, CHENG X, et al.Lipid metabolism reprogramming and its potential targets in cancer[J].Cancer Commun (Lond), 2018, 38(1): 27.
CHENG X, LI J, GUO D.SCAP/SREBPs are central players in lipid metabolism and novel metabolic targets in cancer therapy[J].Curr Top Med Chem, 2018, 18(6): 484-493.
CHEN X, WONG Y K, LIM T K, et al.Artesunate activates the intrinsic apoptosis of HCT116 cells through the suppression of fatty acid synthesis and the NF-κB pathway[J].Molecules, 2017, 22(8): 1272.
BROCKMUELLER A, SAMERI S, LISKOVA A, et al.Resveratrol's anti-cancer effects through the modulation of tumor glucose metabolism[J].Cancers (Basel), 2021, 13(2): 188.
YAN B, CHENG L, JIANG Z, et al.Resveratrol inhibits ROS-promoted activation and glycolysis of pancreatic stellate cells via suppression of miR-21[J].Oxid Med Cell Longev, 2018, 2018:1346958.
CHAI R, FU H, ZHENG Z, et al.Resveratrol inhibits proliferation and migration through SIRT1 mediated post‑translational modification of PI3K/Akt signaling in hepatocellular carcinoma cells[J].Mol Med Rep, 2017, 16(6): 8037-8044.
LIU Y, TONG L, LUO Y, et al.Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway[J].J Cell Biochem, 2018, 119(7):6162-6172.
SAUNIER E, ANTONIO S, REGAZZETTI A, et al.Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells[J].Sci Rep, 2017, 7(1): 6945.
苗向霞,郭蕊,张璎,等.白藜芦醇对肝癌HepG2细胞中脂肪合成的抑制作用及其机制[J].吉林大学学报(医学版),2019, 45(1):69-72.
YANG N, LI C, LI H, et al.Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells[J].Front Pharmacol, 2019, 10: 709.
LI H, XIANG L, YANG N, et al.Zhiheshouwu ethanol extract induces intrinsic apoptosis and reduces unsaturated fatty acids via SREBP1 pathway in hepatocellular carcinoma cells[J].Food Chem Toxicol, 2018, 119: 169-175.
李洪亮,刘明,汪选斌.何首乌对肿瘤脂代谢的影响[J].世界科学技术-中医药现代化,2019, 21(9): 1855-1861.
XU H, ZHOU S, TANG Q, et al.Cholesterol metabolism: New functions and therapeutic approaches in cancer[J].Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188394.
侯世豪,杨波,韦忠恒.蜂毒肽抗肿瘤作用研究进展[J].右江医学,2022, 50(4): 300-303.
WANG X, XIE J, LU X, et al.Melittin inhibits tumor growth and decreases resistance to gemcitabine by downregulating cholesterol pathway gene CLU in pancreatic ductal adenocarcinoma[J].Cancer Lett, 2017, 399: 1-9.
SHIM S H, SUR S, STEELE R, et al.Disrupting cholesterol esterification by bitter melon suppresses triple-negative breast cancer cell growth[J].Mol Carcinog, 2018, 57(11): 1599-1607.
SUR S, NAKANISHI H, FLAVENY C, et al.Correction to: Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract[J].Cell Commun Signal, 2019, 17(1): 151.
WANG W,ZOU W.Amino acids and their transporters in T cell immunity and cancer therapy[J].Mol Cell, 2020, 80(3):384-395.
LEMOS H, HUANG L, PRENDERGAST G C, et al.Immune control by amino acid catabolism during tumorigenesis and therapy[J].Nat Rev Cancer, 2019, 19(3): 162-175.
尤晓昕,张丹,李尔广.氨基酸代谢重编程在肿瘤发生发展及免疫治疗中的作用[J].中国细胞生物学学报,2021, 43(9): 1846-1852.
PATHRIA G, RONAI Z A.Harnessing the co-vulnerabilities of amino acid-restricted cancers[J].Cell Metab, 2021, 33(1): 9-20.
陈辰,蒋敬庭.氨基酸代谢在肿瘤微环境及免疫治疗中作用的研究进展[J]. 中国肿瘤生物治疗杂志,2022, 29(1): 63-69.
YOO H C, YU Y C, SUNG Y, et al.Glutamine reliance in cell metabolism[J].Exp Mol Med, 2020, 52(9): 1496-1516.
XU R, YANG J, REN B, et al.Reprogramming of amino acid metabolism in pancreatic cancer: recent advances and therapeutic strategies[J].Front Oncol, 2020, 10: 572722.
MUKHOPADHYAY S, GOSWAMI D, ADISESHAIAH P P, et al.Undermining glutaminolysis bolsters chemotherapy while NRF2 promotes chemoresistance in KRAS-driven pancreatic cancers[J].Cancer Res, 2020, 80(8): 1630-1643.
LI A M, YE J.Reprogramming of serine, glycine and one-carbon metabolism in cancer[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(10): 165841.
PAVLOVA N N, HUI S, GHERGUROVICH J M, et al.As extracellular glutamine levels decline, asparagine becomes an essential amino acid[J].Cell Metab, 2018, 27(2): 428-438.
YANG K Y, WU C R, ZHENG M Z, et al.Physapubescin I from husk tomato suppresses SW1990 cancer cell growth by targeting kidney-type glutaminase[J].Bioorg Chem, 2019, 92: 103186.
满瑾,韩培,高孜博,等.运用细胞代谢组学策略探究蒲公英提取物的抗肿瘤作用机制[J].郑州大学学报(医学版),2021, 56(5):603-608.
段雲霄,乔丹,贾乃玲,等. 黄芩素抑制胃癌HGC-27细胞上皮间充质转化进程研究[J]. 中国临床药理学杂志,2023, 39(5): 654-658.
郭舜,石磊,张松,等.黄芩素通过调控糖酵解及谷氨酰胺代谢抑制肝癌细胞能量代谢[J].中国药师,2021, 24(12): 2154-2159.
WANG B, SHEN C, LI Y, et al.Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling[J].Onco Targets Ther, 2019, 12: 5751-5765.
孙梦瑶,王丹丹,吴秋雪,等.左金丸对胃癌耐药细胞SGC-7901/DDP增殖和糖酵解的抑制作用[J].上海中医药大学学报,2019, 33(1): 71-75.
王敏,王媛,孙静,等.人参养荣汤对Lewis肺癌糖酵解途径相关酶LDH-A、HK2基因表达的影响[J].辽宁中医杂志,2022, 49(1):180-184.
管京京. 基于代谢组学研究丹栀逍遥散对乳腺癌的影响[D].沈阳:辽宁中医药大学,2022.
杨雨婷,曾瑾,陈平, 等.西黄丸抗肿瘤临床应用及药理作用机制研究进展[J].中国实验方剂学杂志,2022, 28(3): 250-258.
徐钰. 西黄丸调节氨基酸代谢抑制乳腺癌小鼠肿瘤生长的机制研究[D].大连:大连大学,2018.
OHSHIMA K, MORII E.Metabolic reprogramming of cancer cells during tumor progression and metastasis[J].Metabolites, 2021, 11(1): 28.
DEBERARDINIS R J,CHANDEL N S.Fundamentals of cancer metabolism[J].Sci Adv, 2016, 2(5):e1600200.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution