Your Location:
Home >
Browse articles >
Research progress in monomers of traditional Chinese herbal medicine targeting PI3K/Akt/mTOR signaling pathway to prevent and treat diabetic nephropathy
Updated:2023-09-19
    • Research progress in monomers of traditional Chinese herbal medicine targeting PI3K/Akt/mTOR signaling pathway to prevent and treat diabetic nephropathy

    • WANG Wanting

      ,  

      XU Ying

      ,  

      SHAO Minghai

      ,  
    • Shanghai Journal of Traditional Chinese Medicine   Vol. 57, Issue 10, Pages: 83-88(2023)
    • DOI:10.16305/j.1007-1334.2023.2301019    

      CLC:

    Scan for full text

  • Cite this article

    PDF

  • WANG Wanting,XU Ying,SHAO Minghai.Research progress in monomers of traditional Chinese herbal medicine targeting PI3K/Akt/mTOR signaling pathway to prevent and treat diabetic nephropathy[J].Shanghai Journal of Traditional Chinese Medicine,2023,57(10):83-88. DOI: 10.16305/j.1007-1334.2023.2301019.

  •  
  • Full Text(HTML)

  • Figs(1) Tabs(0)

  • References

  • Publication Info

  • Metrics

Sections

Abstract

This article reviewed the research progress in monomers of traditional Chinese herbal medicine targeting PI3K/Akt/mTOR signaling pathway to prevent and treat diabetic nephropathy (DN). Studies have shown that PI3K/Akt/mTOR signaling pathway can inhibit inflammatory reaction, oxidative stress, apoptosis and autophagy, and plays an important role in the development and progression of DN. Monomers of traditional Chinese herbal medicine (baicalin, dendrobine, curcumin, notoginsenoside R1, platycodin D and osthole) can effectively prevent and treat DN by regulating PI3K/Akt/mTOR signaling pathway.

糖尿病肾病(diabetic nephropathy,DN)是糖尿病最严重的微血管并发症之一,也是世界范围内终末期肾脏病的主要病因

1。DN的发病机制复杂,具体机制尚不完全明确。近年来研究发现,磷脂酰肌醇三羟基激酶/蛋白激酶B/雷帕霉素靶蛋白(PI3K/Akt/mTOR)信号通路可以调控炎症因子的释放、氧化应激、细胞凋亡和自噬,在DN发生展过程中起重要作用。目前中医药治疗DN的研究取得了较大进展,中药复方已被证实在DN临床治疗中具有较好的疗效2-3,而对中药单体的研究仍多聚焦于基础实验研究。中药单体靶向调控PI3K/Akt/mTOR信号通路有望突破DN目前治疗的局限性,本文拟通过综述相关研究进展为DN的进一步研究及临床治疗提供新的思路。

1 PI3K/Akt/mTOR信号通路

PI3K/Akt/mTOR信号通路由PI3K及其下游分子Akt和mTOR组成。

1.1 PI3K的结构特征与激活

PI3K是一种胞内磷脂酰肌醇激酶,具有丝氨酸/苏氨酸激酶和磷脂酰肌醇激酶的活性

4。生长因子[如表皮生长因子(EGF)、血小板衍生生长因子(PDGF)和胰岛素样生长因子(IGF)]、细胞因子和趋化因子能够启动PI3K的激活过程,这些因子与细胞表面相应的跨膜受体酪氨酸激酶(RTKs)的N端胞外区结合,可导致RTKs细胞质上的酪氨酸残基自动磷酸化,进而激活PI3K。除了RTKs,G蛋白偶联受体(GPCRs)和小G蛋白RAS也能激活PI3K,激活的PI3K将磷脂酰肌醇-4,5-二磷酸(PIP2)磷酸化,在细胞膜上形成磷脂酰肌醇-3,4,5-三磷酸(PIP3),并进一步激活下游效应子,如Akt5

1.2 Akt的结构特征与激活

Akt是一种丝氨酸/苏氨酸激酶,负责调节细胞的生长、存活、转录和蛋白质合成,是PI3K/Akt信号通路的核心。PI3K产生的PIP3可通过激活磷酸肌醇依赖性蛋白激酶1(PDK1),进一步激活Akt

5。活化的Akt能够激活下游的转录因子,并调节相关靶基因的转录。

1.3 mTOR的结构特征与激活

mTOR是一种丝氨酸/苏氨酸蛋白激酶,包括两种不同的配合物,即mTOR1配合物(mTORC1)和mTOR2配合物(mTORC2)。mTORC1和mTORC2在肾脏中广泛表达,其活性依赖于PI3K/Akt信号通路的调控。激活的Akt在Ser2448位点磷酸化mTOR,可直接激活mTORC1;通过抑制结节性硬化症复合体(TSC)1和TSC2,间接激活mTORC1

6。当mTORC1被激活时,下游的RAS超家族GTP酶(Rheb-GTP)转化为RAS超家族GDP酶(Rheb-GDP),使mTORC1活性保持稳定7。mTORC1直接抑制自噬相关蛋白13(ATG13)的产生,从而抑制自噬。此外,胞外信号调节激酶(ERK)、磷酸化丝氨酸/苏氨酸激酶(p90RSK)、核糖体蛋白S6激酶1(S6K1)均可通过PI3K/Akt途径激活mTORC1,从而发挥抑制足细胞自噬的作用8

2 PI3K/Akt/mTOR信号通路对DN发生发展的影响

DN发生后,人体自身的炎症因子、活性氧(ROS)等水平升高,能够激活RTKs和GPCRs,以磷酸化PI3K和Akt、mTOR,进而诱导PI3K/Akt/mTOR信号通路激活,引发炎症反应、氧化应激、细胞凋亡和自噬等一系列信号级联反应。

2.1 炎症反应

炎症反应在DN中起关键作用

9。糖尿病肾脏代谢失衡和血流动力学紊乱可引起白介素(IL)-6、IL-18、IL-1β、单核细胞趋化蛋白-1(MCP-1)、肿瘤坏死因子-α(TNF-α)、细胞间黏附分子-1(ICAM-1)、血管细胞黏附蛋白-1(VCAM-1)、E-选择素、脂联素、过氧化物酶体增殖物激活受体(PPAR)-α、PPAR-γ等不同炎症因子水平上调10-11,进而形成慢性炎症环境。炎症作为DN进展的上游事件,可进一步加剧肾脏病的进展,二者形成恶性循环。IL-18、IL-1β是DN中重要的促炎细胞因子,在肾脏炎症反应中与趋化细胞因子和黏附分子的表达相关,其可吸引单核细胞、中性粒细胞和淋巴细胞等向肾组织转移,是引起肾损伤的核心介质。同时,单核细胞、中性粒细胞和淋巴细胞等又能够产生各种促炎介质,促进肾损伤发展,使炎症反应加剧。PI3K/Akt/mTOR信号通路广泛存在于细胞内,通过接受多种信号的刺激,起到调控细胞增殖、分化、凋亡、自噬、侵袭和转移作用12。实验13表明,PI3K/Akt信号通路可以抑制下游介质核因子-κB(NF-κB)的激活,从而减少肾脏炎症指标TNF-α、ICAM-1、IL-6的释放,进而减轻肾脏炎症反应。

2.2 氧化应激

氧化应激是DN的主要促进因素

14-15。高血糖可通过多元醇途径、线粒体电子转移链和AGEs-晚期糖基化终产物受体(RAGE)途径增加ROS的产生1116。ROS水平的升高可引起持续的氧化应激,从而降低过氧化氢酶、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶等抗氧化酶的表达,进而促进大量细胞因子和细胞外基质(ECM)的产生,最终引发并促进DN肾脏纤维化的发展17-18。研究19-20表明,PI3K/Akt/mTOR信号通路是氧化应激的主要途径,由ROS介导,以其活性形式调控氧化应激反应。PI3K/Akt能够提高负责上调抗氧化酶的核因子E2相关因子2(Nrf2)的表达水平,Nrf2进入细胞核,可通过募集Maf蛋白增强其与抗氧化反应原件(ARE)的结合能力,从而增加SOD1和SOD2等抗氧化蛋白在细胞质和线粒体中的表达,最终抑制肾脏氧化应激反应21

2.3 细胞凋亡

糖尿病可影响肾脏的所有细胞类型,包括内皮细胞、肾小管间质细胞、足细胞和系膜细胞。其中足细胞的形态变化包括肥大、上皮间质转化(EMT)、脱离和凋亡

22。在正常情况下,促凋亡和抗凋亡信号通路通过共存来维持机体内稳态。DN发生后,PI3K/Akt/mTOR信号通路会发生一系列信号级联反应,即上下游分子发挥对凋亡相关蛋白的调控作用,具体步骤如下。①Akt被PI3K蛋白活化后,可直接磷酸化抗体B淋巴细胞瘤-2(Bcl-2)关联X蛋白(Bax)的Ser184位点,抑制Bax构象变化和激活;磷酸化抗体Bcl-2相互作用细胞死亡调解因子(Bim)的Ser87位点,可抑制细胞凋亡;磷酸化抗体Bcl-2关联死亡启动因子(Bad)、含半胱氨酸的天冬氨酸蛋白水解酶(Caspase)-9,可抑制Caspase-3的激活,进而发挥抗凋亡作用23-25。②Akt能够使糖原合酶激酶3β(GSK3β)的Ser9位点失活并促进其降解,从而防止髓样细胞白血病-1蛋白(Mcl-1)降解,抑制细胞凋亡途径26。③Akt可通过干扰线粒体外膜的通透性和抑制细胞色素C(CytC)的释放,抑制Caspase-9生成,进而抑制凋亡27。④Akt能够抑制促凋亡基因人凋亡相关因子配体(FasL)的表达,从而发挥抗凋亡作用。

2.4 自噬

自噬在肾脏发育过程中至关重要,尤其是足细胞自噬对维持肾脏完整性和正常生理功能至关重要

28。自噬是一把双刃剑,在高糖条件下,自噬不足可导致DN的发生发展29;然而,持续激活的自噬会导致肾脏纤维化30。PI3K/Akt/mTOR信号通路是广泛存在于足细胞中负调节自噬的重要通路。PI3K通过激活Akt,能够抑制足细胞自噬。下游靶基因Akt可通过调控叉头框蛋白O(FOXO)、诱导转录因子激活蛋白-1(AP-1)的表达,抑制自噬相关基因,从而抑制细胞自噬31-32。下游的mTOR作为自噬的调控蛋白,可使UNC-51样激酶1(ULK1)和自噬相关蛋白13(ATG13)、自噬相关蛋白14(ATG14)磷酸化,从而抑制ULK1-ULK2复合物和自噬相关蛋白(Beclin-1)复合物形成,最终抑制足细胞自噬33-34。实验35表明,阿霉素肾病组大鼠足细胞p-PI3K/PI3K、p-Akt/Akt表达下调,中药干预组可通过升高p-PI3K/PI3K、p-Akt/Akt表达,增强PI3K/Akt/mTOR信号通路活性,从而抑制足细胞自噬。PI3K/Akt/mTOR信号通路在DN发生发展中的作用见图1

fig

图1  PI3K/Akt/mTOR信号通路对DN发生发展的影响

注:  DN为糖尿病肾病,RTKs为受体酪氨酸激酶,GPCR为G蛋白偶联受体,PI3K为磷脂酰肌醇3激酶,PIP2为磷脂酰肌醇4,5-二磷酸,PIP3为磷脂酰肌醇3,4,5-三磷脂酰肌醇,PDK1为磷酸肌醇依赖性蛋白激酶1,Akt为蛋白激酶B,TSC1为结节性硬化症复合体1,TSC2为结节性硬化症复合体2,mTOR为哺乳动物雷帕霉素靶蛋白,NF-κB为核因子-κB,Nrf2为核因子E2相关因子2,GSK3β为糖原合酶激酶3β,FasL为人凋亡相关因子配体,CytC为细胞色素C,FOXO为叉头框蛋白O,ATG为自噬相关蛋白,ULK1为UNC-51样激酶1,Inflammation为炎症,OS为氧化应激,Apoptosis为凋亡,Autophagy为自噬,TNF为肿瘤坏死因子,IL为白介素,SOD为超氧化物歧化酶,MDA为丙二醛,Caspase为含半胱氨酸的天冬氨酸蛋白水解酶,Bcl-2为B淋巴细胞瘤-2,Bcl-xL为Bcl-2家族蛋白,Beclin-1为自噬相关蛋白,LC3为自噬微管相关蛋白轻链3。带箭头的线表示正调节,带平端的线表示负调节或抑制;“↑”表示升高,“↓”表示降低。

icon Download:  Full-size image | High-res image | Low-res image

总之,PI3K/Akt/mTOR信号通路在抑制炎症反应、氧化应激、细胞凋亡和自噬方面发挥着重要作用。这4种病理效应并不是孤立的,而是交叉存在、互为因果。具体表现为自噬不足会导致ROS的产生增加,ROS升高会引起持续的氧化应激;除了参与氧化应激,自噬与炎症反应相关,抑制自噬已被证明能够增强炎症小体的活性,而促进自噬可限制炎症因子的产生;AGEs可促进炎症介质的激活和表达,从而增加炎症反应;IL-18等促炎因子不仅可导致自由基产生和氧化损伤,加重氧化应激,而且可通过诱导Bax等促凋亡蛋白,诱发细胞凋亡;氧化应激可通过Bax和Caspase途径导致各种细胞凋亡;自噬和凋亡可在相同的刺激下被诱导,而保持高水平的自噬可以减少细胞凋亡的发生。以上任意一种病理效应的产生均会直接或间接导致DN的发生发展。

3 中药单体调控PI3K/Akt/mTOR信号通路防治DN的研究

在DN的发展过程中,炎症、氧化应激、细胞凋亡和自噬起到了重要作用,目前中医药治疗DN的研究也多从抑制炎症反应、氧化应激、细胞凋亡和自噬等方面入手,并取得了丰富的研究成果。研究

36-37表明,中医药疗法可通过多成分、多途径调控PI3K/Akt/mTOR信号通路中的靶基因及蛋白转录因子的表达,从而改善肾损伤。

3.1 黄芩苷

黄芩苷是中药黄芩中发挥功效的主要活性成分,具有抗炎、抗氧化等药理活性

38-39。有研究40-41表明,黄芩苷可通过抑制肾组织炎症和氧化应激发挥肾保护作用。Ou等42通过建立DN大鼠模型发现,黄芩苷可以通过抑制PI3K/Akt/mTOR信号通路来缓解高糖诱导的炎症和氧化应激,从而降低血糖、血肌酐、血尿素氮、24 h尿蛋白定量,进而延缓肾组织损伤;同时可通过降低TNF-α、IL-6和IL-1β、丙二醛(MDA)的水平,增加SOD的活性,进而发挥抗炎、抗氧化和肾保护作用。

3.2 石斛碱

石斛碱是从中药石斛中提取的主要活性成分,具有抗炎、抗氧化等功效,可以通过缓解肾脏炎症反应发挥肾保护作用

43。樊小宝等44通过研究发现,石斛碱能够明显降低链脲佐菌素(STZ)诱导的DN大鼠的血糖、尿微量白蛋白水平,同时观察到肾组织IL-6、TNF-α的水平下降,p-PI3K/PI3K、p-Akt/Akt和p-mTOR/mTOR表达水平明显升高,提示石斛碱可通过激活PI3K/Akt/mTOR信号通路,发挥抗炎、抑制足细胞凋亡作用,从而改善足细胞功能障碍,发挥肾保护作用。

3.3 姜黄素

姜黄素是从中药姜黄中提取的二酮类化合物,能够发挥抗炎、抗氧化和抗肿瘤等多种生物学功效。有研究

45表明,姜黄素对糖尿病并发症具有保护作用。实验46发现,姜黄素能够明显提高DN大鼠自噬微管相关蛋白轻链3(LC3)水平,提示姜黄素可通过抑制PI3K/Akt/mTOR信号通路诱导大鼠足细胞自噬,抑制EMT,进而降低血糖、血肌酐、尿素氮和尿蛋白水平。

3.4 三七皂苷R1

三七皂苷R1(NGR1)是从中药三七中提取的主要活性成分,具有抗炎、抗凋亡、激活自噬等多种生物学活性

47-48。Huang等49在探索NGR1对DN大鼠的抗炎和抗凋亡反应时发现,NGR1可通过激活PI3K/Akt/mTOR信号通路的表达,上调Bcl-2、Bcl-xL和LC3-I、Beclin-1的表达水平,下调Bax、Bcl-2相关促凋亡蛋白(Bid)的水平,从而抑制细胞凋亡,发挥足细胞保护作用。

3.5 桔梗皂苷D

桔梗皂苷D是从中药桔梗中提取的三萜类有效成分,可通过抑制氧化应激改善肾损伤

50。吴浩等51通过研究发现,桔梗皂苷D不仅可降低DN大鼠肾组织中TNF-α、IL-6、IL-1β和MDA的表达水平,提高SOD的活性,从而降低血糖、糖化血红蛋白和尿蛋白含量,而且肾组织中p-PI3K/PI3K、p-Akt/Akt和p-mTOR/mTOR比值降低,说明桔梗皂苷D可通过调控PI3K/Akt/mTOR信号通路,抑制氧化应激和炎症反应,进而改善肾损伤。

3.6 蛇床子素

蛇床子素是从中药蛇床子中提取的香豆素类化合物,具有抗氧化、抗炎及抑制凋亡的作用。研究

52表明,蛇床子素可降低DN大鼠的尿微量白蛋白水平,改善肾组织病理损伤,且观察到肾组织中PI3K、Akt水平降低,沉默信息调节因子1(SIRT1)水平上调,表明蛇床子素具有抑制细胞自噬、抗氧化以改善肾脏纤维化的作用,这可能与抑制PI3K/Akt/mTOR信号通路从而发挥保护肾脏细胞作用有关。

4 小结

PI3K/Akt/mTOR信号通路可以抑制炎症反应、氧化应激、细胞凋亡和自噬,在DN的发生发展过程中起重要作用。本文较为系统地阐述了PI3K/Akt/mTOR信号通路与DN发病机制的关系,便于从微观层面把握疾病,动态认识疾病的发生、发展过程,进而为中药单体治疗DN提供理论依据。通过文献整理发现,中药单体通过调控PI3K/Akt/mTOR信号通路可以抑制导致肾损伤的多种病理因素,从而发挥肾保护作用,为中药单体应用于DN的临床研究提供了可靠的理论基础。因此,中药治疗DN的研究未来应聚焦在中药单体化合物上,通过结合中医基础理论、证型研究,深入开展对中药单体的临床研究,阐明其作用机制,精简处方,以实现中药单体精准用药、证靶结合;同时可以利用机器学习、蛋白组学和人工智能等现代医学技术对中药单体活性成分展开精准预测,分析中药的主要作用组分,进而开展中药复方的研究。

参考文献

1

MARTINEZ-CASTELAO ANAVARRO-GONZALEZ J FGORRIZ J Let al. The concept and the epidemiology of diabetic nephropathy have changed in recent years[J]. J Clin Med201546): 1207-1216. [Baidu Scholar] 

2

DONG YZHAO QWANG Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy[J]. Sci Rep2021111): 19496. [Baidu Scholar] 

3

YANG Y QTAN H BZHANG X Yet al. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against renal injury and inflammation in mice with diabetic kidney disease[J]. J Ethnopharmacol2022292115165. [Baidu Scholar] 

4

黄芸张治楠黄泳. PI3K-AKT信号通路与抑郁症的关系及中医干预作用研究进展[J]. 上海中医药杂志2020542): 108-112. [Baidu Scholar] 

5

GUO HGERMAN PBAI Set al. The PI3K/AKT pathway and renal cell carcinoma[J]. J Genet Genomics2015427): 343-353. [Baidu Scholar] 

6

MANNING B DTOKER A. AKT/PKB signaling: navigating the network[J]. Cell20171693): 381-405. [Baidu Scholar] 

7

DIBBLE C CCANTLEY L C. Regulation of mTORC1 by PI3K signaling[J]. Trends Cell Biol2015259): 545-555. [Baidu Scholar] 

8

GUI YDAI C. mTOR signaling in kidney diseases[J]. Kidney3602020111): 1319-1327. [Baidu Scholar] 

9

ELSHERBINY N MAL-GAYYAR M M. The role of IL-18 in type 1 diabetic nephropathy: the problem and future treatment[J]. Cytokine20168115-22. [Baidu Scholar] 

10

LIN Y CCHANG Y HYANG S Yet al. Update of pathophysiology and management of diabetic kidney disease[J]. J Formos Med Assoc20181178): 662-675. [Baidu Scholar] 

11

WARREN A MKNUDSEN S TCOOPER M E. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies[J]. Expert Opin Ther Targets2019237): 579-591. [Baidu Scholar] 

12

苏华华王艳华. PI3K/AKT/mTOR信号通路在骨肉瘤中的作用[J]. 生命的化学2021415): 964-971. [Baidu Scholar] 

13

HONG J NLI W WWANG L Let al. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice[J]. Chin Med20171213. [Baidu Scholar] 

14

COUGHLAN M TSHARMA K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease[J]. Kidney Int2016902): 272-279. [Baidu Scholar] 

15

GUCLUAYONGUCNDODURGA Yet al. The effects of grape seed on apoptosis-related gene expression and oxidative stress in streptozotocin-induced diabetic rats[J]. Ren Fail2015372): 192-197. [Baidu Scholar] 

16

SHARMA DBHATTACHARYA PKALIA Ket al. Diabetic nephropathy: new insights into established therapeutic paradigms and novel molecular targets[J]. Diabetes Res Clin Pract201712891-108. [Baidu Scholar] 

17

KATO MNATARAJAN R. Diabetic nephropathy--emerging epigenetic mechanisms[J]. Nat Rev Nephrol2014109): 517-530. [Baidu Scholar] 

18

WIGHT T NPOTTER-PERIGO S. The extracellular matrix: an active or passive player in fibrosis?[J]. Am J Physiol Gastrointest Liver Physiol20113016): G950-G955. [Baidu Scholar] 

19

LU QWANG W WZHANG M Zet al. ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy[J]. Exp Ther Med2019171): 835-846. [Baidu Scholar] 

20

LIAO JLIU BCHEN Ket al. Galangin attenuates oxidative stress-mediated apoptosis in high glucose-induced renal tubular epithelial cells through modulating renin-angiotensin system and PI3K/AKT/mTOR pathway[J]. Toxicol Res (Camb)2021103): 551-560. [Baidu Scholar] 

21

KIM K CLEE I KKANG K Aet al. 7,8-Dihydroxyflavone suppresses oxidative stress-induced base modification in DNA via induction of the repair enzyme 8-oxoguanine DNA glycosylase-1[J]. Biomed Res Int20132013863720. [Baidu Scholar] 

22

MAEZAWA YTAKEMOTO MYOKOTE K. Cell biology of diabetic nephropathy: roles of endothelial cells, tubulointerstitial cells and podocytes[J]. J Diabetes Investig201561): 3-15. [Baidu Scholar] 

23

GARDAI S JHILDEMAN D AFRANKEL S Ket al. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils[J]. J Biol Chem200427920): 21085-21095. [Baidu Scholar] 

24

QI X JWILDEY G MHOWE P H. Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function[J]. J Biol Chem20062812): 813-823. [Baidu Scholar] 

25

PARCELLIER ATINTIGNAC L AZHURAVLEVA Eet al. PKB and the mitochondria: AKTing on apoptosis[J]. Cell Signal2008201): 21-30. [Baidu Scholar] 

26

SU H CMA C TYU B Cet al. Glycogen synthase kinase-3β regulates anti-inflammatory property of fluoxetine[J]. Int Immunopharmacol2012142): 150-156. [Baidu Scholar] 

27

BENDER AOPEL DNAUMANN Iet al. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis[J]. Oncogene2011304): 494-503. [Baidu Scholar] 

28

LIN T AWU V CWANG C Y. Autophagy in chronic kidney diseases[J]. Cells201981): 61. [Baidu Scholar] 

29

KOCH E A TNAKHOUL RNAKHOUL Fet al. Autophagy in diabetic nephropathy: a review[J]. Int Urol Nephrol2020529): 1705-1712. [Baidu Scholar] 

30

HE LLIVINGSTON M JDONG Z. Autophagy in acute kidney injury and repair[J]. Nephron Clin Pract20141271-4): 56-60. [Baidu Scholar] 

31

CALNAN D RBRUNET A. The FoxO code[J]. Oncogene20082716): 2276-2288. [Baidu Scholar] 

32

EIJKELENBOOM ABURGERING B M. FOXOs: signalling integrators for homeostasis maintenance[J]. Nat Rev Mol Cell Biol2013142): 83-97. [Baidu Scholar] 

33

JUNG C HRO S HCAO Jet al. mTOR regulation of autophagy[J]. FEBS Lett20105847): 1287-1295. [Baidu Scholar] 

34

LAPLANTE MSABATINI D M. mTOR signaling at a glance[J]. J Cell Sci2009122Pt 20): 3589-3594. [Baidu Scholar] 

35

赵明明. 基于PI3K/AKT/mTOR及AMPK/mTOR通路调控自噬探讨加味黄芪赤风汤保护足细胞机制[D]. 北京中国中医科学院2022. [Baidu Scholar] 

36

YANG FQU QZHAO Cet al. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice[J]. Biomed Pharmacother2020129110479. [Baidu Scholar] 

37

何康婧高增平王晓雪. 基于PI3K/Akt/mTOR自噬信号通路研究雷公藤多苷片对糖尿病肾病大鼠肾脏损伤的保护作用[J]. 中南药学2020186): 905-909. [Baidu Scholar] 

38

LIU JLIU SPAN Wet al. Wogonoside attenuates the articular cartilage injury and the infiltration of Th1/Th2-type cytokines in papain-induced osteoarthritis in rat model via inhibiting the NF-κB and ERK1/2 activation[J]. Immunopharmacol Immunotoxicol2021433): 343-352. [Baidu Scholar] 

39

李冰冰于海波. 汉黄芩苷通过调节Nrf2/HO-1通路对大鼠心肌缺血再灌注(I/R)损伤的保护作用[J]. 广东化工2021487):37-40. [Baidu Scholar] 

40

赵新. 汉黄芩苷对糖尿病大鼠肾组织炎症因子表达及TLR4/NF-κB信号通路的影响[J]. 中成药2020428): 2166-2169. [Baidu Scholar] 

41

SUN Q RZHANG XFANG K. Phenotype of vascular smooth muscle cells (VSMCs) is regulated by miR-29b by targeting Sirtuin 1[J]. Med Sci Monit2018246599-6607. [Baidu Scholar] 

42

OU YZHANG WCHEN Set al. Baicalin improves podocyte injury in rats with diabetic nephropathy by inhibiting PI3K/Akt/mTOR signaling pathway[J]. Open Med (Wars)2021161): 1286-1298. [Baidu Scholar] 

43

黄琦廖鑫吴芹. 金钗石斛生物总碱对糖尿病大鼠血糖及肝脏组织IRS-2 mRNA,IGF-1 mRNA表达的影响[J]. 中国实验方剂学杂志20142019): 155-158. [Baidu Scholar] 

44

樊小宝丁通孙燕. 石斛碱对糖尿病肾病大鼠PI3K/Akt/mTOR信号通路及足细胞功能障碍的影响[J]. 河北医药20214311):1631-1634, 1639. [Baidu Scholar] 

45

PARSAMANESH NMOOSSAVI MBAHRAMI Aet al. Therapeutic potential of curcumin in diabetic complications[J]. Pharmacol Res2018136181-193. [Baidu Scholar] 

46

TU QLI YJIN Jet al. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells[J]. Pharm Biol2019571): 778-786. [Baidu Scholar] 

47

SU PDU SLI Het al. Notoginsenoside R1 inhibits oxidized low-density lipoprotein induced inflammatory cytokines production in human endothelial EA.hy926 cells[J]. Eur J Pharmacol20167709-15. [Baidu Scholar] 

48

YU YSUN GLUO Yet al. Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress-related signaling pathways[J]. Sci Rep2016621730. [Baidu Scholar] 

49

HUANG GZOU BLV Jet al. Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway[J]. Int J Mol Med2017393): 559-568. [Baidu Scholar] 

50

KIM T WSONG I BLEE H Ket al. Platycodin D, a triterpenoid sapoinin from Platycodon grandiflorum, ameliorates cisplatin-induced nephrotoxicity in mice[J]. Food Chem Toxicol20125012): 4254-4259. [Baidu Scholar] 

51

吴浩符丽珍赵勇. 桔梗皂苷D通过介导PI3K/Akt/mTOR信号通路调节氧化应激改善糖尿病肾病模型大鼠肾损伤[J]. 中国药理学与毒理学杂志2022363): 170-176. [Baidu Scholar] 

52

王晓伟余小柱郭二霞. 蛇床子素通过PI3K/Akt/mTOR通路对糖尿病肾病大鼠纤维化及HSP90、SIRT1的影响[J]. 中国老年学杂志2023436): 1446-1450. [Baidu Scholar] 

196

Views

1302

Downloads

3

CSCD

10

CNKI Cited

Alert me when the article has been cited
Submit
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

Research progress in anti⁃tumor clinical efficacy and mechanism of action of Sarcandrae Herba
Research progress in anti⁃tumor regulation of metabolic reprogramming by active components of traditional Chinese herbal medicines
Research progress on mechanism of action of traditional Chinese herbal medicines for treating metabolism associated fatty liver disease
Research progress of traditional Chinese medicine in improving hyperuricemia by regulating uric acid transporter
Experimental research progress of Dendrobium nobile Lindl. in the treatment of diabetes and its related diseases

Related Author

No data

Related Institution

Shanghai University of Traditional Chinese Medicine
Sichuan Institute for Translational Chinese Medicine
Department of Oncology I, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine
Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine
Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
0