图1 PI3K/Akt/mTOR信号通路对DN发生发展的影响
Scan for full text
Cite this article
This article reviewed the research progress in monomers of traditional Chinese herbal medicine targeting PI3K/Akt/mTOR signaling pathway to prevent and treat diabetic nephropathy (DN). Studies have shown that PI3K/Akt/mTOR signaling pathway can inhibit inflammatory reaction, oxidative stress, apoptosis and autophagy, and plays an important role in the development and progression of DN. Monomers of traditional Chinese herbal medicine (baicalin, dendrobine, curcumin, notoginsenoside R1, platycodin D and osthole) can effectively prevent and treat DN by regulating PI3K/Akt/mTOR signaling pathway.
糖尿病肾病(diabetic nephropathy,DN)是糖尿病最严重的微血管并发症之一,也是世界范围内终末期肾脏病的主要病因[
PI3K/Akt/mTOR信号通路由PI3K及其下游分子Akt和mTOR组成。
PI3K是一种胞内磷脂酰肌醇激酶,具有丝氨酸/苏氨酸激酶和磷脂酰肌醇激酶的活性[
Akt是一种丝氨酸/苏氨酸激酶,负责调节细胞的生长、存活、转录和蛋白质合成,是PI3K/Akt信号通路的核心。PI3K产生的PIP3可通过激活磷酸肌醇依赖性蛋白激酶1(PDK1),进一步激活Akt[
mTOR是一种丝氨酸/苏氨酸蛋白激酶,包括两种不同的配合物,即mTOR1配合物(mTORC1)和mTOR2配合物(mTORC2)。mTORC1和mTORC2在肾脏中广泛表达,其活性依赖于PI3K/Akt信号通路的调控。激活的Akt在Ser2448位点磷酸化mTOR,可直接激活mTORC1;通过抑制结节性硬化症复合体(TSC)1和TSC2,间接激活mTORC1[
DN发生后,人体自身的炎症因子、活性氧(ROS)等水平升高,能够激活RTKs和GPCRs,以磷酸化PI3K和Akt、mTOR,进而诱导PI3K/Akt/mTOR信号通路激活,引发炎症反应、氧化应激、细胞凋亡和自噬等一系列信号级联反应。
炎症反应在DN中起关键作用[
氧化应激是DN的主要促进因素[
糖尿病可影响肾脏的所有细胞类型,包括内皮细胞、肾小管间质细胞、足细胞和系膜细胞。其中足细胞的形态变化包括肥大、上皮间质转化(EMT)、脱离和凋亡[
自噬在肾脏发育过程中至关重要,尤其是足细胞自噬对维持肾脏完整性和正常生理功能至关重要[
图1 PI3K/Akt/mTOR信号通路对DN发生发展的影响
注: DN为糖尿病肾病,RTKs为受体酪氨酸激酶,GPCR为G蛋白偶联受体,PI3K为磷脂酰肌醇3激酶,PIP2为磷脂酰肌醇4,5-二磷酸,PIP3为磷脂酰肌醇3,4,5-三磷脂酰肌醇,PDK1为磷酸肌醇依赖性蛋白激酶1,Akt为蛋白激酶B,TSC1为结节性硬化症复合体1,TSC2为结节性硬化症复合体2,mTOR为哺乳动物雷帕霉素靶蛋白,NF-κB为核因子-κB,Nrf2为核因子E2相关因子2,GSK3β为糖原合酶激酶3β,FasL为人凋亡相关因子配体,CytC为细胞色素C,FOXO为叉头框蛋白O,ATG为自噬相关蛋白,ULK1为UNC-51样激酶1,Inflammation为炎症,OS为氧化应激,Apoptosis为凋亡,Autophagy为自噬,TNF为肿瘤坏死因子,IL为白介素,SOD为超氧化物歧化酶,MDA为丙二醛,Caspase为含半胱氨酸的天冬氨酸蛋白水解酶,Bcl-2为B淋巴细胞瘤-2,Bcl-xL为Bcl-2家族蛋白,Beclin-1为自噬相关蛋白,LC3为自噬微管相关蛋白轻链3。带箭头的线表示正调节,带平端的线表示负调节或抑制;“↑”表示升高,“↓”表示降低。
总之,PI3K/Akt/mTOR信号通路在抑制炎症反应、氧化应激、细胞凋亡和自噬方面发挥着重要作用。这4种病理效应并不是孤立的,而是交叉存在、互为因果。具体表现为自噬不足会导致ROS的产生增加,ROS升高会引起持续的氧化应激;除了参与氧化应激,自噬与炎症反应相关,抑制自噬已被证明能够增强炎症小体的活性,而促进自噬可限制炎症因子的产生;AGEs可促进炎症介质的激活和表达,从而增加炎症反应;IL-18等促炎因子不仅可导致自由基产生和氧化损伤,加重氧化应激,而且可通过诱导Bax等促凋亡蛋白,诱发细胞凋亡;氧化应激可通过Bax和Caspase途径导致各种细胞凋亡;自噬和凋亡可在相同的刺激下被诱导,而保持高水平的自噬可以减少细胞凋亡的发生。以上任意一种病理效应的产生均会直接或间接导致DN的发生发展。
在DN的发展过程中,炎症、氧化应激、细胞凋亡和自噬起到了重要作用,目前中医药治疗DN的研究也多从抑制炎症反应、氧化应激、细胞凋亡和自噬等方面入手,并取得了丰富的研究成果。研究[
黄芩苷是中药黄芩中发挥功效的主要活性成分,具有抗炎、抗氧化等药理活性[
石斛碱是从中药石斛中提取的主要活性成分,具有抗炎、抗氧化等功效,可以通过缓解肾脏炎症反应发挥肾保护作用[
姜黄素是从中药姜黄中提取的二酮类化合物,能够发挥抗炎、抗氧化和抗肿瘤等多种生物学功效。有研究[
三七皂苷R1(NGR1)是从中药三七中提取的主要活性成分,具有抗炎、抗凋亡、激活自噬等多种生物学活性[
桔梗皂苷D是从中药桔梗中提取的三萜类有效成分,可通过抑制氧化应激改善肾损伤[
蛇床子素是从中药蛇床子中提取的香豆素类化合物,具有抗氧化、抗炎及抑制凋亡的作用。研究[
PI3K/Akt/mTOR信号通路可以抑制炎症反应、氧化应激、细胞凋亡和自噬,在DN的发生发展过程中起重要作用。本文较为系统地阐述了PI3K/Akt/mTOR信号通路与DN发病机制的关系,便于从微观层面把握疾病,动态认识疾病的发生、发展过程,进而为中药单体治疗DN提供理论依据。通过文献整理发现,中药单体通过调控PI3K/Akt/mTOR信号通路可以抑制导致肾损伤的多种病理因素,从而发挥肾保护作用,为中药单体应用于DN的临床研究提供了可靠的理论基础。因此,中药治疗DN的研究未来应聚焦在中药单体化合物上,通过结合中医基础理论、证型研究,深入开展对中药单体的临床研究,阐明其作用机制,精简处方,以实现中药单体精准用药、证靶结合;同时可以利用机器学习、蛋白组学和人工智能等现代医学技术对中药单体活性成分展开精准预测,分析中药的主要作用组分,进而开展中药复方的研究。
MARTINEZ-CASTELAO A, NAVARRO-GONZALEZ J F, GORRIZ J L, et al. The concept and the epidemiology of diabetic nephropathy have changed in recent years[J]. J Clin Med, 2015, 4(6): 1207-1216. [Baidu Scholar]
DONG Y, ZHAO Q, WANG Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy[J]. Sci Rep, 2021, 11(1): 19496. [Baidu Scholar]
YANG Y Q, TAN H B, ZHANG X Y, et al. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against renal injury and inflammation in mice with diabetic kidney disease[J]. J Ethnopharmacol, 2022, 292: 115165. [Baidu Scholar]
黄芸,张治楠,黄泳,等. PI3K-AKT信号通路与抑郁症的关系及中医干预作用研究进展[J]. 上海中医药杂志,2020, 54(2): 108-112. [Baidu Scholar]
GUO H, GERMAN P, BAI S, et al. The PI3K/AKT pathway and renal cell carcinoma[J]. J Genet Genomics, 2015, 42(7): 343-353. [Baidu Scholar]
MANNING B D, TOKER A. AKT/PKB signaling: navigating the network[J]. Cell, 2017, 169(3): 381-405. [Baidu Scholar]
DIBBLE C C, CANTLEY L C. Regulation of mTORC1 by PI3K signaling[J]. Trends Cell Biol, 2015, 25(9): 545-555. [Baidu Scholar]
GUI Y, DAI C. mTOR signaling in kidney diseases[J]. Kidney360, 2020, 1(11): 1319-1327. [Baidu Scholar]
ELSHERBINY N M, AL-GAYYAR M M. The role of IL-18 in type 1 diabetic nephropathy: the problem and future treatment[J]. Cytokine, 2016, 81: 15-22. [Baidu Scholar]
LIN Y C, CHANG Y H, YANG S Y, et al. Update of pathophysiology and management of diabetic kidney disease[J]. J Formos Med Assoc, 2018, 117(8): 662-675. [Baidu Scholar]
WARREN A M, KNUDSEN S T, COOPER M E. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies[J]. Expert Opin Ther Targets, 2019, 23(7): 579-591. [Baidu Scholar]
苏华华,王艳华. PI3K/AKT/mTOR信号通路在骨肉瘤中的作用[J]. 生命的化学, 2021, 41(5): 964-971. [Baidu Scholar]
HONG J N, LI W W, WANG L L, et al. Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice[J]. Chin Med, 2017, 12: 13. [Baidu Scholar]
COUGHLAN M T, SHARMA K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease[J]. Kidney Int, 2016, 90(2): 272-279. [Baidu Scholar]
GUCLUA, YONGUCN, DODURGA Y, et al. The effects of grape seed on apoptosis-related gene expression and oxidative stress in streptozotocin-induced diabetic rats[J]. Ren Fail, 2015, 37(2): 192-197. [Baidu Scholar]
SHARMA D, BHATTACHARYA P, KALIA K, et al. Diabetic nephropathy: new insights into established therapeutic paradigms and novel molecular targets[J]. Diabetes Res Clin Pract, 2017, 128: 91-108. [Baidu Scholar]
KATO M, NATARAJAN R. Diabetic nephropathy--emerging epigenetic mechanisms[J]. Nat Rev Nephrol, 2014, 10(9): 517-530. [Baidu Scholar]
WIGHT T N, POTTER-PERIGO S. The extracellular matrix: an active or passive player in fibrosis?[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 301(6): G950-G955. [Baidu Scholar]
LU Q, WANG W W, ZHANG M Z, et al. ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy[J]. Exp Ther Med, 2019, 17(1): 835-846. [Baidu Scholar]
LIAO J, LIU B, CHEN K, et al. Galangin attenuates oxidative stress-mediated apoptosis in high glucose-induced renal tubular epithelial cells through modulating renin-angiotensin system and PI3K/AKT/mTOR pathway[J]. Toxicol Res (Camb), 2021, 10(3): 551-560. [Baidu Scholar]
KIM K C, LEE I K, KANG K A, et al. 7,8-Dihydroxyflavone suppresses oxidative stress-induced base modification in DNA via induction of the repair enzyme 8-oxoguanine DNA glycosylase-1[J]. Biomed Res Int, 2013, 2013: 863720. [Baidu Scholar]
MAEZAWA Y, TAKEMOTO M, YOKOTE K. Cell biology of diabetic nephropathy: roles of endothelial cells, tubulointerstitial cells and podocytes[J]. J Diabetes Investig, 2015, 6(1): 3-15. [Baidu Scholar]
GARDAI S J, HILDEMAN D A, FRANKEL S K, et al. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils[J]. J Biol Chem, 2004, 279(20): 21085-21095. [Baidu Scholar]
QI X J, WILDEY G M, HOWE P H. Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function[J]. J Biol Chem, 2006, 281(2): 813-823. [Baidu Scholar]
PARCELLIER A, TINTIGNAC L A, ZHURAVLEVA E, et al. PKB and the mitochondria: AKTing on apoptosis[J]. Cell Signal, 2008, 20(1): 21-30. [Baidu Scholar]
SU H C, MA C T, YU B C, et al. Glycogen synthase kinase-3β regulates anti-inflammatory property of fluoxetine[J]. Int Immunopharmacol, 2012, 14(2): 150-156. [Baidu Scholar]
BENDER A, OPEL D, NAUMANN I, et al. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis[J]. Oncogene, 2011, 30(4): 494-503. [Baidu Scholar]
LIN T A, WU V C, WANG C Y. Autophagy in chronic kidney diseases[J]. Cells, 2019, 8(1): 61. [Baidu Scholar]
KOCH E A T, NAKHOUL R, NAKHOUL F, et al. Autophagy in diabetic nephropathy: a review[J]. Int Urol Nephrol, 2020, 52(9): 1705-1712. [Baidu Scholar]
HE L, LIVINGSTON M J, DONG Z. Autophagy in acute kidney injury and repair[J]. Nephron Clin Pract, 2014, 127(1-4): 56-60. [Baidu Scholar]
CALNAN D R, BRUNET A. The FoxO code[J]. Oncogene, 2008, 27(16): 2276-2288. [Baidu Scholar]
EIJKELENBOOM A, BURGERING B M. FOXOs: signalling integrators for homeostasis maintenance[J]. Nat Rev Mol Cell Biol, 2013, 14(2): 83-97. [Baidu Scholar]
JUNG C H, RO S H, CAO J, et al. mTOR regulation of autophagy[J]. FEBS Lett, 2010, 584(7): 1287-1295. [Baidu Scholar]
LAPLANTE M, SABATINI D M. mTOR signaling at a glance[J]. J Cell Sci, 2009, 122(Pt 20): 3589-3594. [Baidu Scholar]
赵明明. 基于PI3K/AKT/mTOR及AMPK/mTOR通路调控自噬探讨加味黄芪赤风汤保护足细胞机制[D]. 北京:中国中医科学院,2022. [Baidu Scholar]
YANG F, QU Q, ZHAO C, et al. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice[J]. Biomed Pharmacother, 2020, 129: 110479. [Baidu Scholar]
何康婧,高增平,王晓雪,等. 基于PI3K/Akt/mTOR自噬信号通路研究雷公藤多苷片对糖尿病肾病大鼠肾脏损伤的保护作用[J]. 中南药学,2020, 18(6): 905-909. [Baidu Scholar]
LIU J, LIU S, PAN W, et al. Wogonoside attenuates the articular cartilage injury and the infiltration of Th1/Th2-type cytokines in papain-induced osteoarthritis in rat model via inhibiting the NF-κB and ERK1/2 activation[J]. Immunopharmacol Immunotoxicol, 2021, 43(3): 343-352. [Baidu Scholar]
李冰冰,于海波. 汉黄芩苷通过调节Nrf2/HO-1通路对大鼠心肌缺血再灌注(I/R)损伤的保护作用[J]. 广东化工,2021,48(7):37-40. [Baidu Scholar]
赵新. 汉黄芩苷对糖尿病大鼠肾组织炎症因子表达及TLR4/NF-κB信号通路的影响[J]. 中成药,2020, 42(8): 2166-2169. [Baidu Scholar]
SUN Q R, ZHANG X, FANG K. Phenotype of vascular smooth muscle cells (VSMCs) is regulated by miR-29b by targeting Sirtuin 1[J]. Med Sci Monit, 2018, 24: 6599-6607. [Baidu Scholar]
OU Y, ZHANG W, CHEN S, et al. Baicalin improves podocyte injury in rats with diabetic nephropathy by inhibiting PI3K/Akt/mTOR signaling pathway[J]. Open Med (Wars), 2021, 16(1): 1286-1298. [Baidu Scholar]
黄琦,廖鑫,吴芹,等. 金钗石斛生物总碱对糖尿病大鼠血糖及肝脏组织IRS-2 mRNA,IGF-1 mRNA表达的影响[J]. 中国实验方剂学杂志,2014, 20(19): 155-158. [Baidu Scholar]
樊小宝,丁通,孙燕,等. 石斛碱对糖尿病肾病大鼠PI3K/Akt/mTOR信号通路及足细胞功能障碍的影响[J]. 河北医药,2021, 43(11):1631-1634, 1639. [Baidu Scholar]
PARSAMANESH N, MOOSSAVI M, BAHRAMI A, et al. Therapeutic potential of curcumin in diabetic complications[J]. Pharmacol Res, 2018, 136: 181-193. [Baidu Scholar]
TU Q, LI Y, JIN J, et al. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells[J]. Pharm Biol, 2019, 57(1): 778-786. [Baidu Scholar]
SU P, DU S, LI H, et al. Notoginsenoside R1 inhibits oxidized low-density lipoprotein induced inflammatory cytokines production in human endothelial EA.hy926 cells[J]. Eur J Pharmacol, 2016, 770: 9-15. [Baidu Scholar]
YU Y, SUN G, LUO Y, et al. Cardioprotective effects of Notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic reticulum stress-related signaling pathways[J]. Sci Rep, 2016, 6: 21730. [Baidu Scholar]
HUANG G, ZOU B, LV J, et al. Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway[J]. Int J Mol Med, 2017, 39(3): 559-568. [Baidu Scholar]
KIM T W, SONG I B, LEE H K, et al. Platycodin D, a triterpenoid sapoinin from Platycodon grandiflorum, ameliorates cisplatin-induced nephrotoxicity in mice[J]. Food Chem Toxicol, 2012, 50(12): 4254-4259. [Baidu Scholar]
吴浩,符丽珍,赵勇,等. 桔梗皂苷D通过介导PI3K/Akt/mTOR信号通路调节氧化应激改善糖尿病肾病模型大鼠肾损伤[J]. 中国药理学与毒理学杂志,2022, 36(3): 170-176. [Baidu Scholar]
王晓伟,余小柱,郭二霞,等. 蛇床子素通过PI3K/Akt/mTOR通路对糖尿病肾病大鼠纤维化及HSP90、SIRT1的影响[J]. 中国老年学杂志,2023, 43(6): 1446-1450. [Baidu Scholar]
196
Views
1302
Downloads
3
CSCD
10
CNKI Cited
Related Articles
Related Author
Related Institution