1.中国中医科学院广安门医院心血管科(北京 100053)
2.北京中医药大学研究生院(北京 100029)
扫 描 看 全 文
Chao LIU, Jialiang GAO. Research progress on mechanism of Chinese medicine regulating the macrophages against atherosclerosis. [J]. Shanghai Journal of Traditional Chinese Medicine 55(12):94-99(2021)
Chao LIU, Jialiang GAO. Research progress on mechanism of Chinese medicine regulating the macrophages against atherosclerosis. [J]. Shanghai Journal of Traditional Chinese Medicine 55(12):94-99(2021) DOI: 10.16305/j.1007-1334.2021.2008119.
综述中药干预巨噬细胞抗动脉粥样硬化(AS)机制的研究进展。巨噬细胞的黏附聚集和脂质代谢调节是AS形成的关键,巨噬细胞的极化和自噬调控AS的进展,巨噬细胞的凋亡和炎症反应加速AS的发生。活血化痰中药可调节巨噬细胞的黏附聚集和脂质代谢,扶正补虚中药可调节巨噬细胞的极化和自噬,清热解毒中药可调节巨噬细胞的凋亡和炎症反应。
This paper reviewed the research progress on the mechanism of Chinese medicine regulating macrophages against atherosclerosis(AS). The adhesion and aggregation of macrophages and the regulation of lipid metabolism in macrophages were the key factors in the formation of AS. The polarization and autophagy of macrophages regulated the progression of AS. The apoptosis and inflammation of macrophages accelerated the occurrence of AS. Chinese medicine of activating blood and eliminating phlegm could regulate the adhesion and aggregation of macrophages and lipid metabolism in macrophages. Chinese medicine of reinforcing deficiency could regulate macrophages polarization and autophagy. Chinese medicine of clearing away heat and toxic materials could regulate macrophages apoptosis and inflammation.
中药巨噬细胞动脉粥样硬化机制综述
traditional Chinese herbal medicinemacrophagesatherosclerosismechanismreview
管新竹,刘萍. 巨噬细胞极化与动脉粥样硬化相关性及中药干预作用研究进展[J]. 上海中医药杂志,2019, 53(3): 105-108.
YURDAGUL A,SULZMAIER F J,CHEN X L,et al. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-kappa B activation and VCAM-1 expression[J]. J Cell Sci, 2016, 129(8): 1580-1591.
WANG Y F, LIU J, CHEN X L, et al. Dysfunctional endothelial-derived microparticles promote inflammatory macrophage formation via NF-kB and IL-1 beta signal pathways[J]. J Cell Mol Med, 2019, 23(1): 476-486.
CIPRIANI S, FRANCISCI D, MENCARELLI A, et al. Efficacy of the CCR5 antagonist maraviroc in reducing early, ritonavir-induced atherogenesis and advanced plaque progression in mice[J]. Circulation, 2013, 127(21): 2114-2124.
LLODRA J, ANGELI V, LIU J, et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques[J]. Proc Natl Acad Sci U S A, 2004, 101(32): 11779-11784.
KATTOOR A J, GOEL A, MEHTA J L. LOX-1: Regulation, signaling and its role in atherosclerosis[J]. Antioxidants, 2019, 8(7): 218.
YANG M, SILVERSTEIN R L. CD36 signaling in vascular redox stress[J]. Free Radic Biol Med, 2019(136): 159-171.
LIANG X F, WANG C, SUN Y, et al. p62/mTOR/LXR alpha pathway inhibits cholesterol efflux mediated by ABCA1 and ABCG1 during autophagy blockage[J]. Biochem Biophys Res Commun, 2019, 514(4): 1093-1100.
CHISTIAKOV D A, MELNICHENKO A A, MYASOEDOVA V A, et al. Mechanisms of foam cell formation in atherosclerosis[J]. J Mol Med, 2017, 95(11): 1153-1165.
VERRECK F A W, DE BOER T, LANGENBERG D M L, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2, macrophages subvert, immunity to(myco)bacteria[J]. Proc Natl Acad Sci U S A, 2004, 101(13): 4560-4565.
BI Y, CHEN J, HU F, et al. M2 Macrophages as a potential target for antiatherosclerosis treatment[J]. Neural Plast, 2019(2019): 6724903.
STOGER J L, GIJBELS M J J, VAN DER VELDEN S, et al. Distribution of macrophage polarization markers in human atherosclerosis[J]. Atherosclerosis, 2012, 225(2): 461-468.
LIU X, TANG Y, CUI Y, et al. Autophagy is associated with cell fate in the process of macrophage-derived foam cells formation and progress[J]. J Biomed Sci, 2016, 23(1): 57.
ZHANG L, LIU Q, ZHANG H, et al. C1q/TNF-related protein 9 inhibits thp-1 macrophage foam cell formation by enhancing autophagy[J]. J Cardiovasc Pharmacol, 2018, 72(4): 167-175.
OUYANG S, YAO Y H, ZHANG Z M, et al. Curcumin inhibits hypoxia inducible factor-1 alpha-induced inflammation and apoptosis in macrophages through an ERK dependent pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(4): 1816-1825.
NI J, LI Y, LI W, et al. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways[J]. Lipids Health Dis, 2017, 16(1): 198.
CHENG X L, DING F, WANG D P, et al. Hexarelin attenuates atherosclerosis via inhibiting LOX-1-NF-kappaB signaling pathway-mediated macrophage ox-LDL uptake in ApoE(-/-) mice[J]. Peptides, 2019(121): 170122.
SUN Y, ZHANG D, LIU X L, et al. Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via CHOP activation and over-expression of miR-33[J]. Cell Physiol Biochem, 2018, 48(5): 1995-2010.
FORD H Z, BYRNE H M, MYERSCOUGH M R. A lipid-structured model for macrophage populations in atherosclerotic plaques[J]. J Theor Biol, 2019(479): 48-63.
XIAO Q Q, CHE X Y, CAI B, et al. Macrophage autophagy regulates mitochondria-mediated apoptosis and inhibits necrotic core formation in vulnerable plaques[J]. J Cell Mol Med, 2020, 24(1): 260-275.
MORIYA J. Critical roles of inflammation in atherosclerosis[J]. J Cardiol, 2019, 73(1): 22-27.
HOSEINI Z, SEPAHVAND F, RASHIDI B, et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis[J]. J Cell Physiol, 2018, 233(3): 2116-2132.
KARASAWA T, TAKAHASHI M. Role of NLRP3 Inflammasomes in atherosclerosis[J]. J Atheroscler Thromb, 2017, 24(5): 443-451.
宋剑南,刘东远,牛晓红,等. 高脂血症与中医痰浊关系的实验研究[J]. 中国中医基础医学杂志,1995,1(1): 49-51.
ZHAO D, TONG L F, ZHANG L X, et al. Tanshinone ⅡA stabilizes vulnerable plaques by suppressing RAGE signaling and NF-kappa B activation in apolipoprotein-E-deficient mice[J]. Mol Med Rep, 2016, 14(6): 4983-4990.
COBAN D, MILENKOVIC D, CHANET A, et al. Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration[J]. Mol Nutr Food Res, 2012, 56(8): 1270-1281.
LU J, CHEN X, XU X, et al. Active polypeptides from Hirudo inhibit endothelial cell inflammation and macrophage foam cell formation by regulating the LOX-1/LXR-alpha/ABCA1 pathway[J]. Biomed Pharmacother, 2019(115): 108840.
WANG J, XU P, XIE X, et al. DBZ(Danshensu Bingpian Zhi), a novel natural compound derivative, attenuates atherosclerosis in apolipoprotein E-deficient mice[J]. J Am Heart Assoc, 2017, 6(10): e006297.
王俊, 蒋卫民, 钟勇,等. 血脂康胶囊对巨噬细胞源性泡沫细胞形成以及ABCA1、ABCG1表达的影响[J]. 解放军医学杂志,2014, 39(2): 116-120.
胡楠. 清脂通脉颗粒对大鼠脂质代谢异常及抗动脉粥样硬化作用机制研究[D]. 沈阳:辽宁中医药大学,2019.
DUAN J, XIANG D, LUO H L, et al. Tetramethylpyrazine suppresses lipid accumulation in macrophages via upregulation of the ATP-binding cassette transporters and downregulation of scavenger receptors[J]. Oncol Rep, 2017, 38(4): 2267-2276.
TAN Y L, OU H X, ZHANG M, et al. Tanshinone ⅡA promotes macrophage cholesterol efflux and attenuates atherosclerosis of apoE-/- mice by omentin-1/ABCA1 pathway[J]. Curr Pharm Biotechnol, 2019, 20(5): 422-432.
GAO L N, ZHOU X, LU Y R, et al. Dan-lou prescription inhibits foam cell formation induced by ox-LDL via the TLR4/NF-kappaB and ppargamma signaling pathways[J]. Front Physiol, 2018(9): 590.
李新梅,钟言,梁蕴瑜, 等. 老年高血压患者血管衰老与中医证素情况分析[J]. 广州中医药大学学报,2021, 38(1): 6-10.
GUO M, XIAO J, SHENG X, et al. Ginsenoside Rg3 mitigates atherosclerosis progression in diabetic apoE-/- mice by skewing macrophages to the M2 phenotype[J]. Front Pharmacol, 2018(9): 464.
KANG S, PARK S J, LEE A Y, et al. Ginsenoside Rg(3) promotes inflammation resolution through M2 macrophage polarization[J]. J Ginseng Res, 2018, 42(1): 68-74.
ZHANG X, LIU M H, QIAO L, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype[J]. J Cell Mol Med, 2018, 22(1): 409-416.
廖海锋, 邓向亮, 罗霞,等. 羧甲基茯苓多糖对巨噬细胞极化的影响[J]. 中国实验方剂学杂志,2016, 22(13): 122-126.
张卫萍,刘超永,周娟. 淫羊藿苷对脂蛋白多糖诱导的巨噬细胞RAW264.7细胞M1/M2炎症表型转化的影响[J]. 中华中医药杂志,2016, 31(10): 4239-4242.
杨迎飞. 红景天苷调节巨噬细胞极化抗动脉粥样硬化的实验研究[D]. 昆明:云南中医学院,2018.
李红蓉,常丽萍,刘玉金,等. 通心络对巨噬细胞极化的影响[J]. 中国药理学通报,2017, 33(4): 577-580.
QIAO L, ZHANG X, LIU M, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by improving autophagy and lipid metabolism in macrophage foam cells[J]. Front Pharmacol, 2017(8): 727.
LI X, ZHOU Y, ZHANG X, et al. Cordycepin stimulates autophagy in macrophages and prevents atherosclerotic plaque formation in ApoE(-/-) mice[J]. Oncotarget, 2017, 8(55): 94726-94737.
张志鑫, 李彦杰,秦合伟,等. 基于PI3K/Akt/mTOR信号通路调控巨噬细胞自噬探讨黄芪甲苷抗动脉粥样硬化的作用机制[J]. 中草药,2017, 48(17): 3575-3581.
ZHOU M, REN P, ZHANG Y, et al. Shen-Yuan-Dan capsule attenuates atherosclerosis and foam cell formation by enhancing autophagy and inhibiting the PI3K/Akt/mTORC1 signaling pathway[J]. Front Pharmacol, 2019(10): 603.
薛峥,叶玺,谢年谨. 急性冠脉综合征冠脉病变与中医证型的相关性分析[J]. 南京中医药大学学报,2017, 33(3): 239-241.
周明学,徐浩,陈可冀. 中医脂毒、瘀毒与易损斑块关系的理论探讨[J]. 中国中医基础医学杂志,2007,13(10): 737-738.
GUO R, SU Y, LIU B X, et al. Resveratrol suppresses oxidised low-density lipoprotein-induced macrophage apoptosis through inhibition of intracellular reactive oxygen species generation, LOX-1, and the p38 MAPK pathway[J]. Cell Physiol Biochem, 2014, 34(2): 603-616.
LUO Y, SUN G, DONG X, et al. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction[J]. PLoS One, 2015, 10(3): e0120259.
ZHANG B C, ZHANG C W, WANG C, et al. Luteolin attenuates foam cell formation and apoptosis in Ox-LDL-stimulated macrophages by enhancing autophagy[J]. Cell Physiol Biochem, 2016, 39(5): 2065-2076.
刘学谦,王静,曹守沛,等. 凉血散瘀法通过抑制巨噬细胞凋亡抗动脉粥样硬化的作用[J]. 中国实验方剂学杂志,2019, 25(3): 59-65.
赵正,李琦,尹婕,等. 参莲提取物对ox-LDL诱导的巨噬细胞泡沫化和凋亡的药效学研究及提取部位活性比较[J]. 中国现代中药,2019, 21(5): 590-597.
PENG Y, XU J, ZENG Y, et al. Polydatin attenuates atherosclerosis in apolipoprotein E-deficient mice: Role of reverse cholesterol transport[J]. Phytomedicine, 2019(62): 152935.
ZHOU M X, XU H, PAN L, et al. Emodin promotes atherosclerotic plaque stability in fat-fed apolipoprotein E-deficient mice[J]. Tohoku J Exp Med, 2008, 215(1): 61-69.
JIANG Y, DU H, LIU X, et al. Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-kappaB/NLRP3 inflammasomes pathway[J]. J Drug Target, 2020, 28(1): 70-79.
JIANG Y G, HUANG K, LIN X X, et al. Berberine attenuates NLRP3 inflammasome activation in macrophages to reduce the secretion of interleukin-1 beta[J]. Ann Clin Lab Sci, 2017, 47(6): 720-728.
WANG Y, FAN L, ZHANG J F, et al. Resveratrol inhibited the formation of NLRP3 inflammatory body by activating autophagy signal pathway in atherosclerosis[J]. Int J Clin Exp Med, 2017, 10(12): 16762-16770.
ZHANG B C, LI Z, XU W, et al. Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells[J]. Am J Transl Res, 2018, 10(1): 265-273.
0
Views
548
下载量
0
CSCD
3
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution