浏览全部资源
扫码关注微信
1.上海中医药大学中西医结合学院(上海 201203)
2.上海市重大传染病与生物安全研究院中医药疫病研究中心(上海 201203)
3.上海中医药大学上海市健康辨识与评估重点实验室(上海 201203)
Published:10 September 2024,
Received:01 March 2024,
移动端阅览
陶艺文,许利荣,胡友,等.木犀草素通过激活GSK3β/Nrf2通路抑制感染性炎症反应的研究[J].上海中医药杂志,2024,58(9):61-69.
TAO Yiwen,XU Lirong,HU You,et al.Study on inhibition of infectious inflammatory response by luteolin via activation of GSK3β/Nrf2 pathway[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(9):61-69.
陶艺文,许利荣,胡友,等.木犀草素通过激活GSK3β/Nrf2通路抑制感染性炎症反应的研究[J].上海中医药杂志,2024,58(9):61-69. DOI: 10.16305/1.1007-1334.2024.2403002.
TAO Yiwen,XU Lirong,HU You,et al.Study on inhibition of infectious inflammatory response by luteolin via activation of GSK3β/Nrf2 pathway[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(9):61-69. DOI: 10.16305/1.1007-1334.2024.2403002.
目的
2
观察木犀草素对流感病毒感染引起的细胞炎症反应的影响,探讨木犀草素调控流感病毒引发的免疫反应的作用机制。
方法
2
①用细胞计数试剂盒(CCK-8)法检测不同浓度木犀草素(5、10、25、30 μmol/L)对小鼠巨噬
细胞RAW 264.7存活率的影响。②咪喹莫特(R837)刺激RAW 264.7或原代腹腔巨噬细胞的同时,用不同浓度木犀草素(5、10、20 μmol/L)干预细胞3、6、18 h后,用荧光定量逆转录聚合酶链式反应(RT-qPCR)法和酶联免疫吸附测定(ELISA)法检测白细胞介素(
IL
)-
6
、肿瘤坏死因子-α(
TNF
-α)、
IL
-
1β
、β干扰素(
IFN
-
β
)、干扰素诱导蛋白-10(
IP
-
10
)以及血红素加氧酶-1(
HO
-
1
)基因及TNF-α、IL-6的表达水平。③R837刺激RAW 264.7细胞的同时,用不同浓度木犀草素(5、10、20 μmol/L)干预细胞1、3 h,用Western blot法检测细胞核因子-κB(NF-κB)p65蛋白、磷酸化p65(p-p65)蛋白、磷酸化糖原合成酶激酶3β(p-GSK3β)蛋白、Kelch样ECH关联蛋白1(Keap1)和核内核因子红细胞2相关因子(Nrf2)蛋白的表达水平。④用Nrf2抑制剂(ML385)处理RAW 264.7细胞12 h后,加入R837和木犀草素(5 μmol/L)继续培养6 h,用RT-qPCR法检测细胞
IL
-
6、TNF
-
α、IL
-
1β、IFN
-
β、IP
-
10
mRNA的表达水平。⑤流感病毒A/PR/8(PR8)感染A549细胞2 h,同时用不同浓度木犀草素(5、10、20 μmol/L)处理细胞10 h,用RT-qPCR法检测细胞
IL
-
6、TNF
-
α、IL
-
1β、IFN
-
β、IP
-
10
和单核细胞趋化蛋白-1(
MCP
-
1
)mRNA的表达水平。
结果
2
①30 μmol/L以内各浓度木犀草素对RAW 264.7细胞存活率没有明显影响(
P
>
0.05)。②木犀草素能够显著降低R837诱导的RAW 264.7细胞IL-6、TNF‑α的表达水平和
IL
-
1β
、
IFN
-
β
、
IP
-
10
mRNA表达水平,且木犀草素也能显著降低原代腹腔巨噬细胞IL-6、TNF-α的表达水平。③木犀草素可以促进Nrf2入核,上调
HO
-
1
mRNA表达并抑制p-p65表达,促进糖原合成酶激酶3β(GSK3β)的磷酸化。④在R837诱导的巨噬细胞炎症反应中,ML385可恢复木犀草素抑制的RAW 264.7细胞炎症因子
IL
-
6
、
IL
-
1β
、
IFN
-
β
和
IP
-
10
mRNA的表达水平。⑤木犀草素抑制PR8感染引起的A549细胞炎症因子的产生。
结论
2
木犀草素可通过抑制GSK3β活性促进Nrf2/HO-1通路,从而抑制流感病毒感染引起的炎症反应。
Objective
2
To observe the effects of luteolin on cell inflammatory response induced by influenza virus infection and to explore the mechanisms of luteolin regulating the immune response triggered by influenza virus.
Methods
2
①Cell Counting Kit-8 (CCK8) assay was used to observe luteolin (5, 10, 25, 30 μmol/L) on the viability of macrophages in mouse macrophage RAW 264.7. ②RAW 264.7 cells or mouse peritoneal macrophages were stimulated by imiquimod (R837) and cells were treated with luteolin (5, 10, 20 μmol/L) for 3, 6 or 18 h,the expression levels of interleukin(IL)-6, tumor necrosis factor-α (TNF-α), IL-1β, interferon-β (IFN-β), interferon gamma-induced protein 10 (IP-10) and heme oxygenase-1 (HO-1) were detected using fluorescent quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) methods. ③RAW 264.7 cells stimulated by R837 were treated with different concentrations of luteolin (5, 10, 20 μmol/L) for 1 or 3 h. The expression levels of nuclear factor-κB (NF-κB) p65 protein, phosphorylation p65 (p-p65) protein, phosphorylated glycogen synthase kinase-3β (p‑GSK3β), kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in nuclear were detected using Western blot method. ④RAW 264.7 cells were pretreated with Nrf2 inhibitor (ML385) for 12 h, and cells were treated with R837 and luteolin (5 μmol/L) for another 6 h. The mRNA expression levels of
IL
-
6
,
TNF
-
α
,
IL
-
1β
,
IFN
-
β
and
IP
-
10
were detected using RT-qPCR method. ⑤A549 cells were infected with influenza virus A/PR/8C(PR8) for 2 h, and cells were treated with different concentrations of luteolin (5, 10, 20 μmol/L) for 10 h. The mRNA expression levels of
IL
-
6
,
TNF
-
α
,
IL
-
1β
,
IFN
-
β
,
IP
-
10
and monocyte chemo
attractant protein-1 (
MCP
-
1
) were detected using RT-qPCR method.
Results
2
①Different concentrations of luteolin under 30 μmol/L had no effect on the viability of RAW 264.7 cells (
P
>
0.05). ②Luteolin significantly reduced the expression levels of IL-6 and TNF-α. Luteolin also reduced the mRNA expression levels of
IL
-
1β
,
IFN
-
β
and
IP
-
10
in RAW 264.7 cells. Meanwhile, luteolin reduced the secretion of IL-6 and TNF-α in primary peritoneal macrophages under stimulation of R837. ③Luteolin could promote Nrf2 into nuclear, up-regulate
HO
-
1
mRNA expression, inhibit p-p65 expression, and promote the phosphorylation of glycogen synthase kinase 3β (GSK3β). ④In the R837-induced macrophage inflammation, ML385 could restore the mRNA expression levels of
IL
-
6
,
IL
-
1β
,
IFN
-
β
and
IP
-
10
inhibited by luteolin in RAW 264.7 cells. ⑤Luteolin inhibited the production of inflammatory factors in A549 cells induced by PR8 infection.
Conclusion
2
Luteolin could inhibit inflammation caused by influenza virus infection by inhibiting GSK3β activity and promoting the Nrf2/HO-1 pathway.
流感病毒炎症反应免疫反应木犀草素作用机制中药研究
influenza virusinflammatory responseimmunological reactionluteolinmechanism of actiontraditional Chinese herbal medicine research
MOLINARI N-A M, ORTEGA-SANCHEZ I R, MESSONNIER M L, et al. The annual impact of seasonal influenza in the US: measuring disease burden and costs[J]. Vaccine, 2007, 25(27): 5086-5096.
TE VELTHUIS A J, FODOR E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis[J]. Nat Rev Microbiol, 2016, 14(8): 479-493.
YE Q, WANG B, MAO J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19[J]. Infect, 2020, 80(6): 607-613.
ARZEY G G, KIRKLAND P D, ARZEY K E, et al. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia[J]. Emerg Infect Dis, 2012, 18(5): 814-816.
上海市中西医结合学会呼吸病专业委员会.新型冠状病毒肺炎若干热点问题的中西医结合建议[J]. 上海中医药杂志, 2020, 54(4): 6-9.
ZHANG J, WANG J, GONG Y, et al. Interleukin-6 and granulocyte colony-stimulating factor as predictors of the prognosis of influenza-associated pneumonia[J]. BMC Infect Dis, 2022, 22(1): 343.
HEROLD S, BECHER C,RIDGE K M, et al. Influenza virus-induced lung injury: pathogenesis and implications for treatment[J]. Eur Respir J, 2015, 45(5): 1463-1478.
KUNG Y Y. H1N1 influenza: Is traditional Chinese medicine effective and safe?[J]. J Chin Med Assoc, 2016, 79(5): 237-238.
RODRÍGUEZ-MORALES P, FRANKLIN R A. Macrophage phenotypes and functions: resolving inflammation and restoring homeostasis[J]. Trends Immunol, 2023, 44(12): 986-998.
KUMAR N, XIN Z T, LIANG Y, et al. NF-κB signaling differentially regulates influenza virus RNA synthesis[J]. J Virol, 2008, 82(20): 9880-9889.
NACKEN W, EHRHARDT C, LUDWIG S. Small molecule inhibitors of the c-Jun N-terminal kinase (JNK) possess antiviral activity against highly pathogenic avian and human pandemic influenza A viruses[J]. Biol Chem, 2012, 393(6): 525-534.
PLESCHKA S, WOLFF T, EHRHARDT C, et al. Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade[J]. Nat Cell Biol, 2001, 3(3): 301-305.
IWASAKI A, PILLAI P S. Innate immunity to influenza virus infection[J]. Nat Rev Immunol, 2014, 14(5): 315-328.
LAGHLALI G, LAWLOR K E, TATE M D. Die another way: interplay between influenza A virus, inflammation and cell death[J]. Viruses, 2020, 12(4): 401.
LEVONEN A L, INKALA M, HEIKURA T, et al. Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo[J]. Arterioscler Thromb Vasc Biol, 2007, 27(4): 741-747.
KOBAYASHI E H, SUZUKI T, FUNAYAMA R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription[J]. Nat Commun, 2016, 7: 11624.
KHOR T O, HUANG M T, KWON K H, et al. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis[J]. Cancer Res, 2006, 66(24): 11580-11584.
HEGAZI R A, RAO K N, MAYLE A, et al. Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway[J]. J Exp Med, 2005, 202(12): 1703-1713.
MARELLI G, ERRENI M, ANSELMO A, et al. Heme-oxygenase-1 production by intestinal CX3CR1+ macrophages helps to resolve inflammation and prevents carcinogenesis[J]. Cancer Res, 2017, 77(16): 4472-4485.
RYTER S W. Heme oxygenase-1: an anti-inflammatory effector in cardiovascular, lung, and related metabolic disorders[J]. Antioxidants (Basel), 2022, 11(3): 555.
SHEIKH S Z, HEGAZI R A, KOBAYASHI T, et al. An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis[J]. J Immunol, 2011, 186(9): 5506-5513.
TZIMA S, VICTORATOS P, KRANIDIOTI K, et al. Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-β production[J]. J Exp Med, 2009, 206(5): 1167-1179.
THIMMULAPPA R K, LEE H, RANGASAMY T, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis[J]. J Clin Invest, 2006, 116(4): 984-995.
CHO H Y, IMANI F, MILLER-DEGRAFF L, et al. Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease[J]. Am J Respir Crit Care Med, 2009, 179(2): 138-150.
JIANG T, TIAN F, ZHENG H, et al. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-κB-mediated inflammatory response[J]. Kidney Int, 2014, 85(2): 333-343.
朱双全. 紫苏化学成分及药理学研究进展概要[J]. 生物化工, 2018, 4(2): 148-149, 152.
骆红飞,申屠乐. 香青兰挥发油抗菌、抗流感病毒作用的实验研究[J]. 中国中医药科技, 2013, 20(3): 264-265.
鲍岩岩,时宇静,郭姗姗,等. 复方芩兰口服液对人冠状病毒肺炎疫毒袭肺证的治疗作用[J]. 中国中药杂志, 2020, 45(7): 1474-1480.
耿亚飞,杨成,赵炳天. 木犀草素对铜绿假单胞菌上清液诱导RAW264.7炎症反应的作用[J]. 中成药, 2023, 45(5): 1686-1690.
XIONG Z, CUI Y, WU J, et al. Luteolin-7-O-rutinoside from Pteris cretica L. var. nervosa attenuates LPS/D-gal-induced acute liver injury by inhibiting PI3K/AKT/AMPK/NF-κB signaling pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(10): 1283-1295.
肖如雁,谢红莲,宋佳林,等. 木犀草素对原发性硬化性胆管炎治疗作用研究[J]. 中国现代医生, 2023, 45(6): 76-81.
章捷,田由,吴臻斐,等. 木犀草素介导PERK/eIF2α/CHOP信号通路改善新生大鼠坏死性小肠结肠炎的作用研究[J]. 浙江医学, 2023, 45(21): 2248-2254, 2353.
YAN H, MA L, WANG H, et al. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression[J]. J Nat Med, 2019, 73(3): 487-496.
WANG S, LING Y, YAO Y, et al. Luteolin inhibits respiratory syncytial virus replication by regulating the MiR-155/SOCS1/STAT1 signaling pathway[J]. Virol J, 2020, 17(1): 187.
AHMED S M U, LUO L, NAMANI A, et al. Nrf2 signaling pathway: Pivotal roles in inflammation[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(2): 585-597.
KALBOLANDI S M, GORJI A V, BABAAHMADI-REZAEI H, et al. Luteolin confers renoprotection against ischemia-reperfusion injury via involving Nrf2 pathway and regulating miR320[J]. Mol Biol Rep, 2019, 46(8): 4039-4047.
储娜,张璇,陈思远,等. 木犀草素显著减轻镉诱导的肺上皮Beas-2B细胞的损伤[J]. 南方医科大学学报, 2021, 41(5): 729-735.
XIAO C, XIA M L, WANG J, et al. Luteolin attenuates cardiac ischemia/reperfusion injury in diabetic rats by modulating Nrf2 antioxidative function[J]. Oxid Med Cell Longev, 2019, 2019: 2719252.
RADA P, ROJO A I, CHOWDHRY S, et al. SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner[J]. Mol Cell Biol, 2011, 31(6): 1121-1133.
CAI M, SUN S, WANG J, et al. Sevoflurane preconditioning protects experimental ischemic stroke by enhancing anti-inflammatory microglia/macrophages phenotype polarization through GSK-3β/Nrf2 pathway[J]. CNS Neurosci Ther, 2021, 27(11): 1348-1365.
邓东沅,顾立刚,刘晓婷,等. 木犀草素体外对H1N1感染A549诱导凋亡的干预作用及机制[J]. 中华中医药杂志, 2017, 32(4): 1524-1527.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution