浏览全部资源
扫码关注微信
1.湖南中医药大学研究生院(湖南 长沙 410208)
2.湖南省中西医结合医院国医大师刘祖贻工作室(湖南 长沙 410006)
Published:10 September 2024,
Received:11 December 2023,
移动端阅览
万钰铃,陈彦君,陈静文,等.帕宁Ⅰ号方对帕金森病小鼠多巴胺能神经元氧化应激介导的铁死亡途径的影响[J].上海中医药杂志,2024,58(9):80-90.
WAN Yuling,CHEN Yanjun,CHEN Jingwen,et al.Effects of Paning Ⅰ Formula on oxidative stress‑mediated ferroptosis pathway in dopaminergic neurons of PD mice[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(9):80-90.
万钰铃,陈彦君,陈静文,等.帕宁Ⅰ号方对帕金森病小鼠多巴胺能神经元氧化应激介导的铁死亡途径的影响[J].上海中医药杂志,2024,58(9):80-90. DOI: 10.16305/1.1007-1334.2024.2312042.
WAN Yuling,CHEN Yanjun,CHEN Jingwen,et al.Effects of Paning Ⅰ Formula on oxidative stress‑mediated ferroptosis pathway in dopaminergic neurons of PD mice[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(9):80-90. DOI: 10.16305/1.1007-1334.2024.2312042.
目的
2
研究帕宁Ⅰ号方对帕金森病(PD)小鼠多巴胺能神经元氧化应激介导的铁死亡途径的影响,探讨帕宁Ⅰ号方治疗PD的作用机制。
方法
2
SPF级C57/BL6小鼠60只,腹腔注射1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)诱导PD模型。将50只造模成功的小鼠随机分为模型组[氯化钠溶液(9 g/L)]、美多芭组(97.5 mg/kg多巴丝肼溶液)及中药低、中、高剂量组(9.05 g/kg、18.10 g/kg、36.20 g/kg帕宁Ⅰ号方),每组10只;另设正常组10只。小鼠灌胃给予相应干预,连续干预14 d。采用爬杆实验、步态实验、旷场实验分析评价小鼠运动功能。采用尼氏染色法检测小鼠黑质神经元活性,酶联免疫吸附试验(ELISA)检测小鼠纹状体多巴胺(DA)、3,4-二羟基苯乙酸(DOPAC)、3-甲氧基4-羟基苯乙酸(HVA)含量,免疫组织化学法检测小鼠黑质酪氨酸羟化酶(TH)表达,普鲁士蓝染色法检测小鼠黑质Fe
3+
沉积情况,比色法检测小鼠黑质Fe
2+
含量、过氧化氢酶(CAT)、谷胱甘肽(GSH)、谷胱甘肽过氧化物酶(GSH-PX)、丙二醛(MDA)、超氧化物歧化酶(SOD)水平,流式细胞术检测小鼠多巴胺能神经元活性氧(ROS)水平,Western blot法检测小鼠黑质酰基辅酶A合成酶长链家族成员4(ACSL4)、谷胱甘肽过氧化物酶4(GPX4)、溶质运载蛋白7家族成员11(SLC7A11)蛋白表达。
结果
2
①运动功能结果显示,与正常组相比,模型组小鼠步长缩短,行动总距离缩短,爬杆时间延长(
P
<
0.01);与模型组相比,各药物组运动功能障碍随灌胃次数的增加而逐渐减轻,到灌胃后第12天时各项运动功能改善最为明显(
P
<
0.05)。②尼氏染色结果显示,与正常组相比,模型组小鼠黑质神经元平均光密度表达减少(
P
<
0.01);与模型组相比,中药中、高剂量组与美多芭组神经元平均光密度表达增加(
P
<
0.01,
P
<
0.001)。③ELISA结果显示,与正常组相比,模型组小鼠纹状体DA、DOPAC、HVA含量减少(
P
<
0.001);与模型组相比,美多芭组与中药高剂量组DA含量增加(
P
<
0.001),美多芭组与中药中、高剂量组DOPAC、HVA含量增加(
P
<
0.05,
P
<
0.001)。④免疫组织化学法结果显示,与正常组相比,模型组小鼠黑质TH表达减少(
P
<
0.001);与模型组相比,美多芭组与中药高剂量组TH表达增多(
P
<
0.01,
P
<
0.001)。⑤普鲁士蓝染色显示,与正常组相比,模型组小鼠黑质铁沉积增多,铁死亡增加;与模型组相比,各药物组铁沉积减少,铁死亡减轻。⑥比色法结果显示,与正常组相比,模型组Fe
2+
含量增加(
P
<
0.001),CAT、GSH-PX、SOD活性降低(
P
<
0.001),GSH水平降低(
P
<
0.001),MDA水平升高(
P
<
0.01);与模型组相比,美多芭组及中药中、高剂量组Fe
2+
含量减少(
P
<
0.05,
P
<
0.001)、GSH-PX活性与GSH水平升高(
P
<
0.05,
P
<
0.001),美多芭组CAT活性升高(
P
<
0.05)、MDA水平降低(
P
<
0.05),美多芭组与中药高剂量组SOD活性升高(
P
<
0.05)。⑦流式细胞术结果显示,与正常组相比,模型组小鼠黑质ROS水平升高(
P
<
0.001);与模型组相比,美多芭组与中药高剂量组ROS水平降低(
P
<
0.01)。⑧Western blot结果显示,与正常组相比,模型组小鼠黑质ACSL4蛋白表达升高(
P
<
0.001),GPX4、SLC7A11蛋白表达降低(
P
<
0.001);与模型组相比,各药物组ACSL4蛋白表达降低(
P
<
0.05,
P
<
0.001),GPX4、SLC7A11蛋白表达升高(
P
<
0.01,
P
<
0.001)。
结论
2
帕宁Ⅰ号方可减轻MPTP诱导的PD小鼠运动功能障碍,具有神经保护作用,其机制可能与调节铁代谢、改善氧化应激、抑制多巴胺能神经元铁死亡有关。
Objective
2
To investigate the effects of Paning Ⅰ Formula on oxidative stress-mediated ferroptosis pathway in dopaminergic neurons of Parkinson's disease(PD) mice,and to explore the mechanism of this formula in treating PD.
Methods
2
Sixty SPF-grade C57/BL6 mice were injected intraperitoneally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a PD model. Fifty successfully modeled mice were randomly divided into model group (9 g/L sodium chloride solution), madopar group (97.5 mg/kg levodopa and benserazide hydrochloride solution), and TCM low, medium and high dose groups (9.05 g/kg, 18.10 g/kg, 36.20 g/kg
Paning Ⅰ Formula), with 10 mice in each group; an additional 10 mice were set as the normal group. The mice were administered the corresponding interventions via gavage for 14 consecutive days. The motor function of mice was evaluated by climbing pole, gait and open field analysis. The activity of mice substantia nigra neurons was detected by Nissl staining. The contents of dopamin (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-hydroxy-4-methoxyphenylacetic acid (HVA) in striatum of mice were detected by enzyme-linked immunosorbent assay (ELISA). The expression of tyrosine hydroxylase (TH) in substantia nigra of mice was detected by immunohistochemistry. The deposition of Fe
3+
in substantia nigra of mice was detected by Prussian bl
ue staining. The contents of serum Fe
2+
, and the level of catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-PX), malonic dialdehyde (MDA) and superoxide dismutase (SOD) were detected by colorimetry. Flow cytometry was used to detect reactive oxygen species (ROS) levels in mouse dopaminergic neurons. The protein expressions of acyl-CoA synthetase long chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) in the substantia nigra were detected by Western blot.
Results
2
①Motor function results showed that compared with the normal group, the step length and total moving distance of model group were shortened, and the pole climbing time was prolonged in the model group (
P
<
0.01); Compared with the model group, dyskinesia of the each drug group was gradually decreased with the increased of gavage number of times, the improvement in the motor function was the most obvious at the day 12 after gavage (
P
<
0.05). ②Nissl staining showed that compared with the normal group, the expression of average optical density in mice substantia nigra neurons was decreased in the model group (
P
<
0.01); compared with the model group, the expression of average optical density in mice substantia nigra neurons was increased in medium, high dose groups and madopar group (
P
<
0.01,
P
<
0.001). ③ELISA results showed that compared with the normal group, the content of DA, DOPAC and HVA were increased in the mice striatum of the model group (
P
<
0.001); Compared with the model group, the content of DA was increased in high dose group and madopar group (
P
<
0.001); the content of DOPAC and HVA were increased in medium, high dose groups and madopar group (
P
<
0.05,
P
<
0.001). ④The immunohistochemical method results showed that, compared with the normal group, the expression of
TH in mice substantia nigra neuron was decreased (
P
<
0.001); Compared with the model group, the expression of TH in high dose group and madopar group were increased (
P
<
0.01,
P
<
0.001). ⑤Prussian blue staining showed that compared with the normal group, iron deposition and the iron death in the nigra of mice were increased in the model group; Compared with the model group, iron deposition and the iron death in the nigra of mice were decreased in each drug group. ⑥The colorimetric results showed that compared with the normal group, in the model group, the content of Fe
2+
was increased (
P
<
0.001), the activity of CAT, GSH-PX and SOD were decreased (
P
<
0.001), the level of GSH was decreased (
P
<
0.001), the level of MDA was increased (
P
<
0.01); Compared with the model group, in the medium, high dose groups and madopar group, the content of Fe
2+
decreased (
P
<
0.05,
P
<
0.001), the activity of GSH-PX and GSH were increased (
P
<
0.05,
P
<
0.001), in madopar group, the activity of CAT was increased (
P
<
0.05), the level of MDA was decreased (
P
<
0.05), in high dose group and madopar group, the activity of SOD was increased (
P
<
0.05). ⑦Flow cytometry results showed that, compared with the normal group, the level of ROS in the nigra of mice was increased in the model group (
P
<
0.001); Compared with the model group, the level of ROS was decreased in high dose group and madopar group (
P
<
0.01); ⑧Results of Western blot showed that, compared with the normal group, in model group, the expression of ACSL4 protein in the nigra of mice was increased (
P
<
0.001), the expression of GPX4 and SLC711 protein were decreased (
P
<
0.001); Compared with the model group, in each drug group
, the expression of ACSL4 protein was increased (
P
<
0.05,
P
<
0.001), the expression of GPX4 and SLC711 protein were increased (
P
<
0.01,
P
<
0.001).
Conclusions
2
Paning Ⅰ Formula can alleviate motor dysfunction in MPTP-induced PD mice and has a neuroprotective effect. Its mechanism may be related to regulating iron metabolism, improving oxidative stress and inhibiting ferroptosis of dopaminergic neurons.
帕金森病帕宁Ⅰ号方铁死亡氧化应激小鼠中药研究
Parkinson's diseasePaning Ⅰ Formulaferroptosisoxidative stressmicetraditional Chinese medicine research
KOULI A, TORSNEY K M, KUAN W L. Parkinson's disease: etiology, neuropathology, and pathogenesis[M/OL]. Brisbane (AU): Codon Publications: 2018[2024-6-20]. https://www.ncbi.nlm.nih.gov/books/NBK536722https://www.ncbi.nlm.nih.gov/books/NBK536722.
BEITZ J M. Parkinson's disease: a review[J]. Front Biosci (Schol Ed), 2014, 6(1): 65-74.
MAHONEY-SANCHEZ L, BOUCHAOUI H, AYTON S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson's disease[J]. Prog Neurobiol, 2021, 196: 101890.
ROCHETTE L, DOGON G, RIGAL E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24(1): 449.
LI J, CAO F, YIN H L, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
赵喆,鲍秀琦,张丹. 铁死亡调控机制及其在帕金森病中的研究进展[J]. 药学学报, 2019, 54(3): 399-406.
韩广祥,刘芳. 国医大师刘祖贻治疗帕金森病验案3则[J]. 湖南中医杂志, 2023, 39(4): 71-73.
魏伟,吴希美,李元建. 药理实验方法学[M]. 北京:人民卫生出版社, 2010: 71.
许耀刚,庞晓峰,汲娟娟. MPTP损伤的小鼠PD模型的制作与评价[J]. 生物化学与生物物理进展, 2006, 33(10): 1014-1018.
SEDELIS M, SCHWARTING R K, HUSTON J P. Behavioral phenotyping of the MPTP mouse model of Parkinson's disease[J]. Behav Brain Res, 2001, 125(1-2): 109-125.
曾楚楚,王琦,周胜强,等. 国医大师刘祖贻运用温阳息风法治疗颤证经验[J]. 湖南中医药大学学报, 2021, 41(2): 170-173.
孙天颖,袁灿兴.袁灿兴以滋补肝肾为主分期论治帕金森病经验[J].上海中医药杂志, 2023, 57(6): 68-71.
TU L, WU Z Y, YANG X L, et al. Neuroprotective effect and mechanism of baicalin on Parkinson's disease model induced by 6‑OHDA[J]. Neuropsychiatr Dis Treat, 2019, 15: 3615-3625.
SEDELIS M, HOFELE K, AUBURGER G W, et al. MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences[J]. Behav Genet, 2000, 30(3): 171-182.
刘蕾蕾,田心韵,李文涛. 补肾止颤方对帕金森病小鼠模型神经保护及抗兴奋性氨基酸作用[J]. 中草药, 2023, 54(21): 7096-7103.
LV M, XUE G, CHENG H, et al. The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF‑κB inflammatory pathway in the MPTP mouse model of Parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01[J]. Brain Behav, 2021, 11(8): e2231.
锡林宝勒日,徐万龙,白靖平. 三种尼氏小体染色方法对放疗后犬脊髓神经元显示效果的比较[J]. 实用医学杂志, 2010, 26(12): 2112-2114.
曹聪,黄沁雯,王红,等. 运动及复杂环境抑制细菌脂多糖诱导的中脑黑质多巴胺能神经元损伤[J]. 解剖学报, 2024, 55(3): 253-259.
徐成成,陆艳,唐莉莉,等. 温肾养肝汤对MPTP所致帕金森病多巴胺能神经元损伤保护的分子机制研究[J]. 南京中医药大学学报,2022, 38(2): 122-128.
练东银,陈颖,李晗,等. 八角枫提取物的神经毒性及对脑组织神经递质的影响[J]. 中华中医药杂志, 2023, 38(12): 6003-6007.
耿艺娟,孙梦桢,赵进东,等. 人参皂苷Rb1对MPTP诱导的神经元损伤和小鼠行为学异常的作用研究[J]. 天然产物研究与开发, 2022, 34(5): 842-847.
LIN Z H, LIU Y, XUE N J, et al. Quercetin protects against MPP(+)/MPTP-induced dopaminergic neuron death in Parkinson's disease by inhibiting ferroptosis[J]. Oxid Med Cell Longev, 2022, 2022: 7769355.
SONG L M, XIAO Z X, ZHANG N, et al. Apoferritin improves motor deficits in MPTP-treated mice by regulating brain iron metabolism and ferroptosis[J]. iScience, 2021, 24(5): 102431.
LIU T, WANG P, YIN H, et al. Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP(+)-induced models of Parkinson's disease[J]. Neural Regen Res, 2023, 18(11): 2514-2519.
JOHNSON W M, WILSON-DELFOSSE A L, MIEYAL J J. Dysregulation of glutathione homeostasis in neurodegenerative diseases[J]. Nutrients, 2012, 4(10): 1399-1440.
XU Y, LI Y, LI J, et al. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation[J]. Redox Biol, 2022, 53: 102349.
殷铭泽,王孙云澍,李泽,等. 铁相关氧化应激及细胞衰老在心血管疾病中作用的研究进展[J]. 心脏杂志, 2024(6): 690-696.
SUN Y, PHAM A N, WAITE T D. Elucidation of the interplay between Fe(Ⅱ), Fe(Ⅲ), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines[J]. J Neurochem, 2016, 137(6): 955-968.
VELJOVIC T, DJURIC M, MIRNIC J, et al. Lipid peroxidation levels in saliva and plasma of patients suffering from periodontitis[J]. J Clin Med, 2022, 11(13): 3617.
李卓,陈梦璇,汪苇杭,等.Mn-SOD通过GSK-3β影响HO-1和Drp1的抗氧化应激减轻MTX相关肝细胞损伤[J].中南大学学报(医学版), 2022, 47(9): 1191-1199.
高向群,齐世锐,徐焕凤. 法舒地尔联合阿托伐他汀治疗对老年血管性痴呆患者血清SOD、MDA、Hcy、IFN-γ表达变化探讨[J].临床和实验医学杂志, 2021, 20(6): 621-624.
TANG B, LI S, CAO W, et al. The association of oxidative stress status with open-angle glaucoma and exfoliation glaucoma: a systematic review and meta-analysis[J]. J Ophthalmol, 2019, 2019: 1803619.
KHAN Z, ALI S A. Oxidative stress-related biomarkers in Parkinson's disease: A systematic review and meta-analysis[J]. Iran J Neurol, 2018, 17(3): 137-144.
韩佳瑞, 彭紫凝, 王学艺,等. 糖尿病肾病血瘀证大鼠铁死亡相关基因GPX4、ACSL4表达水平变化[J]. 安徽中医药大学学报, 2023, 42(2): 78-84.
KAGAN V E, MAO G, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90.
YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331.
ZHAO X, GAO M, LIANG J, et al. SLC7A11 Reduces laser-induced choroidal neovascularization by inhibiting RPE ferroptosis and VEGF production[J]. Front Cell Dev Biol, 2021, 9: 639851.
高薇,王佳勇. 基于Nrf2/HO-1通路的柴胡皂苷A对A549细胞顺铂敏感性的影响[J]. 中国中医药信息杂志, 2023, 30(1): 121-127.
李晨,王鹏,王亮,等. 补肾活血颗粒对亚急性帕金森病模型小鼠脑黑质多巴胺神经元铁死亡的影响[J]. 中医杂志, 2022, 63(15): 1463-1469.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution