浏览全部资源
扫码关注微信
河南省驻马店市第二人民医院药学部(河南 驻马店 463000)
Published:10 October 2024,
Received:09 October 2023,
移动端阅览
王华真,何磊,孟祥宇,等.基于网络药理⁃分子对接⁃SPR技术研究甘麦大枣汤联合百合知母汤治疗抑郁症的分子机制[J].上海中医药杂志,2024,58(10):79-88.
WANG Huazhen,HE Lei,MENG Xiangyu,et al.Study on molecular mechanism of Ganmai Dazao Decoction combined with Baihe Zhimu Decoction in treating depression based on network pharmacology‑molecular docking‑SPR technology[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(10):79-88.
王华真,何磊,孟祥宇,等.基于网络药理⁃分子对接⁃SPR技术研究甘麦大枣汤联合百合知母汤治疗抑郁症的分子机制[J].上海中医药杂志,2024,58(10):79-88. DOI: 10.16305/1.1007-1334.2024.2310026.
WANG Huazhen,HE Lei,MENG Xiangyu,et al.Study on molecular mechanism of Ganmai Dazao Decoction combined with Baihe Zhimu Decoction in treating depression based on network pharmacology‑molecular docking‑SPR technology[J].Shanghai Journal of Traditional Chinese Medicine,2024,58(10):79-88. DOI: 10.16305/1.1007-1334.2024.2310026.
目的
2
通过网络药理学探析甘麦大枣汤联合百合知母汤的活性成分及治疗抑郁症的潜在靶点,并通过分子对接、表面等离子共振(SPR)实验、热迁移实验对主要活性成分-关键靶点相互作用进行验证。
方法
2
运用中药系统药理学技术平台(TCMSP)、草本成分靶点平台(HIT)、中药分子机制生物信息学分析工具数据库(BATMAN-TCM)、中医百科全书数据库(ETCM)筛选甘麦大枣汤联合百合知母汤的有效成分。运用TCMSP数据库、比较毒理基因组学数据库(CTD)、PHARMAPPER药物靶点数据库获得甘麦大枣汤联合百合知母汤的潜在作用靶点,运用人类基因数据库(GeneCards)和基因表达数据库(GEO)获得抑郁症相关靶点,与上述药物作用靶点取交集后得到潜在治疗抑郁症靶点。运用String数据库构建靶点蛋白-蛋白相互作用(PPI)网络,运用DAVID数据库和京都基因与基因组百科全书(KEGG)数据库进行基因本体(GO)和KEGG富集分析,运用Cytoscape软件构建相应网络,筛选甘麦大枣汤联合百合知母汤抗抑郁的关键靶点和相应的活性成分。运用Discovery studio软件进行分子对接,运用SPR技术检测活性成分与靶点结合活性,运用热迁移实验检测主要活性成分与靶点的结合作用。
结果
2
经药物吸收-分配-代谢-排泄-毒性数据库(ADMET)筛选后获得甘麦大枣汤联合百合知母汤的有效成分160个,与抑郁症相关靶点、抑郁患者差异表达基因取交集后获得潜在抗抑郁靶点763个。经PPI网络分析、GO及KEGG富集分析发现,丝裂原活化蛋白激酶(MAPK)信号通路等10条信号转导通路可能发挥重要作用,其中MAPK14处于关键位置。分子对接和SPR实验结果显示,刺芒柄花素(formononetin)、甘草查尔酮A(licochalcone A)和维斯体素(vestitol)为甘麦大枣汤联合百合知母汤的主要活性成分,可与MAPK14蛋白结合,亲和力分别为2.36 μmol/L、26.01 μmol/L、11.30 μmol/L。热迁移实验显示这3个成分与MAPK14结合后可显著提高MAPK14的热稳定性,表明这3个成分与MAPK14能发生相互作用。
结论
2
MAPK14是治疗抑郁症的潜在靶点,甘麦大枣汤联合百合知母汤通过其中3种活性成分与MAPK14结合,首次从活性分子直接作用靶点角度解释了甘麦大枣汤联合百合知母汤治疗抑郁的分子机制。
Objective
2
To explore the active ingredients of Ganmai Dazao Decoction (GDD) combined with Baihe Zhimu Decoction (BZD) and the potential targets for the treatment of depression by network pharmacology, and verify the interaction between the main active ingredients and the key targets by molecular docking, surface plasmon resonance (SPR), and thermal shift assay experiments.
Methods
2
TCMSP, HIT, BATMAN-TCM and ECTM databases were used to screen the effective compounds in GDD combined with BZD. TCMSP, CTD and PHARMAPPER databases were used to obtain the potential targets of GDD combined with BZD. GeneCards and GEO databases were used to obtain depression-related targets, and the potential therapeutic targets for depression were obtained after intersection with above targets. The target protein-protein interaction (PPI) network was constructed using String database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using DAVID and KEGG databases. Cytoscape software was used to construct the corresponding network to obtain the main active ingredients and key targets. Discovery studio software was used for molecular docking. SPR technology was used to detect the binding activity of active ingredients and target. Thermal migration assay was used to detect the binding effect of main active ingredients and target.
Results
2
After ADMET screening, 160 active components of GDD combined with BZD were obtained, and 763 potential anti-depression targets were obtained after intersection of depression-related targets and differentially expressed genes of depressed patients. PPI network analysis, GO and KEGG enrichment analysis showed that 10 signaling pathways such as mitogen-activated protein kinase(MAPK) signaling pathway may play an important role, of which MAPK14 was the most important. Molecular docking and SPR experiments showed that formononetin, licochalcone A and vestitol were the main active ingredients of GDD combined with BZD, which could bind to MAPK14 protein with the affinity of 2.36 μmol/L, 26.01 μmol/L, 11.30 μmol/L, respectively. The thermal migration assay showed that these 3 molecules could significantly improve the thermal stability of MAPK14 after binding to MAPK14, indicating that these 3 molecules could interacted with MAPK14.
Conclusions
2
MAPK14 is a potential target for the treatment of depression, GDD combined with BZD bind to MAPK14 through 3 active ingredients. The molecular mechanism of GDD combined with BZD in treating depression was explained from the point of view of direct action of active molecules for the first time.
抑郁症甘麦大枣汤百合知母汤表面等离子共振技术网络药理学作用机制
depressionGanmai Dazao DecoctionBaihe Zhimu Decoctionsurface plasmon resonance technologynetwork pharmacologymechanism of action
《中成药治疗优势病种临床应用指南》标准化项目组. 中成药治疗抑郁障碍临床应用指南(2022年)[J]. 中国中西医结合杂志, 2023, 43(5): 527-541.
JIANG N. Formal volunteering and depressive symptoms among Community-Dwelling older adults in China: A longitudinal cross-level analysis[J]. Health Soc Care Community, 2022, 30(6): e5673-e5684.
HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224.
COLLABORATORS C-M D. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic[J]. Lancet, 2021, 398(10312): 1700-1712.
ROHENKOHL A C, DAUBMANN A, GALLINAT J, et al. Health-related quality of life in severe psychotic disorders during integrated care: 5-year course, prediction and treatment implications (ACCESS Ⅱ)[J]. Health Qual Life Outcomes, 2022, 20(1): 133.
ORMEROD S, MCDOWELL S E, COLEMAN J J, et al. Ethnic differences in the risks of adverse reactions to drugs used in the treatment of psychoses and depression: a systematic review and meta-analysis[J]. Drug Saf, 2008, 31(7): 597-607.
MONTEGGIA L M, MALENKA R C, DEISSEROTH K. Depression: the best way forward[J]. Nature, 2014, 515(7526): 200-201.
李学杰,吴小宇,刘鑫,等.基于数据挖掘和网络药理学探讨治疗抑郁症的中药复方专利用药规律及机制[J].上海中医药杂志, 2024, 58(6): 31-39.
GONG X, CHANG R, ZOU J, et al. The role and mechanism of tryptophan - kynurenine metabolic pathway in depression[J]. Rev Neurosci, 2022, 34(3): 313-324.
GONG W, WANG K, WANG X, et al. Mathematical algorithm-based identification of the functional components and mechanisms in depression treatment: An example of Danggui-Shaoyao-San[J]. Front Cell Dev Biol, 2022, 10: 937621.
DU L J, ZHANG X N, LI S S, et al. Network pharmacological investigation into the mechanism of Kaixinsan powder for the treatment of depression[J]. Metab Brain Dis,2022, 37(8):2903-2914.
CHEN J, LEI C, LI X, et al. Research progress on classical traditional Chinese medicine formula xiaoyaosan in the treatment of depression[J]. Front Pharmacol, 2022, 13: 925514.
YEUNG W F, CHUNG K F, NG K Y, et al. A meta-analysis of the efficacy and safety of traditional Chinese medicine formula Ganmai Dazao decoction for depression[J]. J Ethnopharmacol, 2014, 153(2): 309-317.
马小娟,赵杰,冯振宇,等.加味甘麦大枣汤对更年期抑郁症患者神经内分泌系统的影响[J]. 中国中药杂志, 2014, 39(23): 4680-4684.
杨雪静,许二平,尚立芝. 甘麦大枣汤及其合方治疗抑郁症研究新进展[J]. 中国实验方剂学杂志, 2021, 27(24): 55-60.
ZHONG M, TIAN X, CHEN S, et al. Identifying the active components of Baihe-Zhimu decoction that ameliorate depressive disease by an effective integrated strategy: a systemic pharmacokinetics study combined with classical depression model tests[J]. Chin Med, 2019, 14: 37.
WANG H Q, LIU H T, WANG L, et al. Uncovering the active components, prospective targets, and molecular mechanism of Baihe Zhimu decoction for treating depression using network pharmacology-based analysis[J]. J Ethnopharmacol, 2021, 281: 114586.
康丽杰,杨雪静,丁娜娜,等. 百合知母汤的研究进展[J]. 中华中医药学刊, 2023, 42(3): 132-137.
赵小玲. 甘麦大枣汤合百合知母汤加减治疗抑郁症临床研究[J]. 亚太传统医药, 2017, 13(18): 157-158.
颜平. 抑郁症采用甘麦大枣汤合百合知母汤加减治疗的临床效果分析[J]. 世界最新医学信息文摘, 2019, 19(A4): 258-265.
徐春朝. 甘麦大枣汤合百合知母汤加减治疗抑郁症疗效观察[J]. 实用中医药杂志, 2022, 38(3): 368-369.
刘国强. 甘麦大枣汤合百合知母汤加减治疗抑郁症的临床效果及对患者睡眠质量和生活质量影响分析[J]. 临床医药文献电子杂志, 2018, 5(97): 148-149.
靳玉梅. 百合知母汤加减联合甘麦大枣汤与盐酸氟西汀治疗抑郁症的临床观察[J]. 中国民间疗法, 2018, 26(11): 73-74.
黄河涛. 甘麦大枣汤合百合知母汤加减治疗抑郁症的效果研究[J]. 当代医药论丛, 2020, 18(13): 192-193.
冯璐,齐子欣,姚卓,等. 甘麦大枣汤合百合知母汤加减联合心理疗法治疗抑郁症的临床效果观察[J]. 中华中医药学刊, 2021, 39(10): 169-172.
陈雪梅. 甘麦大枣汤合百合知母汤加减治疗抑郁症的效果研究[J]. 中国实用医药, 2018, 13(9): 107-109.
ZHENG S, XUE T, WANG B, et al. Application of network pharmacology in the study of the mechanism of action of traditional Chinese medicine in the treatment of COVID-19[J]. Front Pharmacol, 2022, 13: 926901.
YANG H Y, LIU M L, LUO P, et al. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine[J]. Phytomedicine, 2022, 104: 154268.
郑曦妍,刘宇,贾锡荣,等. 表面等离子体共振技术在药物研究中的应用[J]. 药学研究, 2021, 40(3): 196-205.
陈莹莹,丁黎. 基于表面等离子共振技术检测免疫球蛋白G与Fc段受体结合活性[J]. 中国医药科学, 2022, 12(16): 49-52.
RU J, LI P, WANG J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13.
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021[J]. Nucleic Acids Res, 2021, 49(D1): D480-D489.
MIYATA S, KURACHI M, OKANO Y, et al. Blood transcriptomic markers in patients with late-onset major depressive disorder[J]. PLoS One, 2016, 11(2): e0150262.
王春芳,田文国,陈金鹏,等. 中药抗抑郁作用及其机制研究进展[J]. 中草药, 2022, 53(9): 2890-2901.
肖晓霞,陈畅,夏宝妹,等. 越鞠甘麦大枣汤对产后抑郁小鼠海马SIRT1-ERK1/2信号通路的影响[J]. 实用医学杂志,2020, 36(15): 2043-2047.
沈琴琴. 越鞠甘麦大枣汤依赖NMDA/NO/cGMP信号通路产生抗抑郁作用机制研究[D]. 南京:南京中医药大学,2019.
夏宝妹,陈畅,张海楼,等. 越鞠甘麦大枣汤对产后抑郁小鼠海马AKT/mTOR信号通路的影响[J]. 中国药理学通报, 2016, 32(1): 119-122.
MADKOUR M M, ANBAR H S, EL-GAMAL M I. Current status and future prospects of p38alpha/MAPK14 kinase and its inhibitors[J]. Eur J Med Chem, 2021, 213: 113216.
MORETTI M, BUDNI J, FREITAS A E, et al. TNF-α-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment[J]. Eur Neuropsychopharmacol, 2015, 25(6): 902-912.
NAVARRETE M, CUARTERO M I, PALENZUELA R, et al. Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory[J]. Nat Commun, 2019, 10(1): 2968.
BRUCHAS M R, SCHINDLER A G, SHANKAR H, et al. Selective p38α MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction[J]. Neuron, 2011, 71(3): 498-511.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution